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Abstract: The indexing and retrieval of multimedia content is generally implemented by employing
feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the
level of detail in feature detection. A higher level of detail increases the effectiveness of the results,
but also leads to more complex graph structures. However, graph traversal-based algorithms for
similarity are quite inefficient and computationally expensive, especially for large data structures. To
deliver fast and effective retrieval especially for large multimedia collections and multimedia big
data, an efficient similarity algorithm for large graphs in particular is desirable. Hence, in this paper,
we define a graph projection into a 2D space (Graph Code) and the corresponding algorithms for
indexing and retrieval. We show that calculations in this space can be performed more efficiently
than graph traversals due to the simpler processing model and the high level of parallelization.
As a consequence, we demonstrate experimentally that the effectiveness of retrieval also increases
substantially, as the Graph Code facilitates more levels of detail in feature fusion. These levels of
detail also support an increased trust prediction, particularly for fused social media content. In
our mathematical model, we define a metric triple for the Graph Code, which also enhances the
ranked result representations. Thus, Graph Codes provide a significant increase in efficiency and
effectiveness, especially for multimedia indexing and retrieval, and can be applied to images, videos,
text and social media information.

Keywords: indexing; retrieval; semantics; graph algorithm; Graph Code; multimedia

1. Introduction and Motivation

Multimedia assets such as images, videos, social media posts, texts or audio are
deeply integrated into the life of many users. The ease of creating multimedia content,
e.g., on smartphones, and publishing it on social media has not been evident heretofore.
Infrastructure services such as high-speed networks, cloud services or online storage
require an efficient and effective structuration of multimedia content [1] because, e.g., every
single minute, 147,000 photos are uploaded to Facebook, 41.6 million WhatsApp messages
are sent and 347,000 stories are posted by Instagram [2]. These figures are still increasing
and leave many open challenges for both users and content providers.

Indexing and fast retrieval of these assets are essential for managing this large volume
of information. For this task, graph-based technologies and structures are commonly used,
as feature information is based on information nodes and links between these nodes [3].
Such graph structures typically grow significantly and can contain about 500 nodes and
2000 edges per asset. To increase the accuracy of retrieval, more information from var-
ious sources (e.g., social media, documents, the Semantic Web, embedded metadata) is
integrated into large feature graphs. However, to employ these features, especially for
effective retrieval, in a very detailed manner, fast graph-based similarity algorithms are
required. Current solutions, as, e.g., Neo4J databases [4], and their integrated algorithms
fail to deliver acceptable processing times for retrieval, as they need several minutes to
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calculate the similarity of fused feature graphs. Typically, response times under 1 s are
regarded as “good”, and according to [5], anything over 1s is “a problem”.

In this paper, we describe a fast and accurate retrieval algorithm for multimedia
feature graphs and the corresponding mathematical and technical concepts. This algorithm
is based on a projection of graphs into a 2D space, which supports parallelization in
retrieval and can utilize standard pattern matching algorithms including machine learning.
The proposed concept can be applied to any kind of multimedia asset that has a graph
representation (e.g., images, videos, text, audio). Especially for multimedia big data, these
2D projections can provide a huge increase in efficiency. For our experiments, we present
details on the performance, accuracy and quality based on various datasets, measured on
various devices, including tablets. In Section 2, we summarize the current state-of-the-art
and related works. Section 3 contains the mathematical and algorithmic details of the
Graph Codes and their applications, which form the basis for the implementation given in
Section 4. Finally, the evaluation in Section 5 shows the detailed results of the experiments
regarding its effectiveness and efficiency. Section 6 concludes and discusses future work.

2. State-of-the-Art and Related Work

This section provides an overview of current indexing and retrieval techniques, which
either represent or contribute to the feature information of multimedia content. The
indexing and retrieval of textual information, images, audio and video assets are described,
and the current concepts for feature integration, which result in large graph structures.
The technologies discussed can contribute multimedia features to feature vectors. A brief
description of the mathematical background of these graphs is given, and an overview of
current datasets for indexing and retrieval.

2.1. Multimedia Feature Extraction

This subsection describes briefly some of the underlying algorithms that can extract
or generate features (note: feature categories resulting from the processing of the presented
algorithms are given in italics) from varied multimedia content. Comprehensive overviews
were given in [6–8], and the following presents some selected algorithms and technologies.
These algorithms were selected because they extract various mentioned features at different
levels from multimedia objects and because they are highly cited in the literature.

Text: For multimedia processing, textual information is usually added in form of
metadata, annotations or corresponding short texts (e.g., social media posts, descriptions,
tag lines). Typically, for this type of text, the basic Boolean algorithm [8] has provided the
best results, as it is specifically designed for small text patterns [9]. Thus, this algorithm is
often used when fusing textual information into multimedia feature graphs as discussed
in [8]. The normalization and aggregation of texts and result fusion are described in [10].

Images: In addition to the textual processing of an image’s annotations, algorithms
for colour-based feature detection using histograms (e.g., dominant colours) or colour
distributions of images can provide information in order to identify similar images [8] or
regions. Image feature retrieval based on shape, also known as object detection, utilizes
edge detection, template matching and rotational normalization to identify if an asset
contains one or more detectable objects [6,11]. This also includes, e.g., label detection, text
recognition or landmark detection. Algorithms to detect spatial relations (e.g., relation-
ships) [12], and machine learning are often employed to increase the effectiveness of feature
detection [6]. Image metadata such as EXIF [13] are also relevant features (e.g., geolocation,
date, time, camera model).

Audio: Hidden Markov models (HMMs) are a common basis for several audio al-
gorithms. These models can be split into two categories: (1) forward algorithms (which
work well with isolated words) and (2) Viterbi algorithms (for continuous speech). These
algorithms are used for speech recognition and analysis and provide a basis for transcribing
and textually processing audio content into features. Also, in this field, the use of machine
learning (particularly neural networks) has increased the effectiveness of retrieval, but exten-
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sive training is required [9,11,14]. The textual representation of audio is often regarded as a
multimedia feature representation [8] and processed with text feature-extraction algorithms.

Video: for indexing videos, several approaches are common: r-frame detection is used
to capture the main content of a scene (e.g., main objects, scene type). Features can then
be extracted based on image indexing. Shot Detection (i.e., the automated detection of
different scenes in video content), can be performed by various algorithms [15]. Motion
Information Algorithms extend this detection and also consider motion information [8,16].
Metadata and Annotations of video are standardized (e.g., MPEG7 [17] with metadata,
time codes) and can be used to extract features of the whole video or single shots [9].

In general, every detected feature can be regarded as a multimedia indexing term.
The indexing term of any relevant feature thus becomes part of the vocabulary of the overall
retrieval index. In Multimedia Indexing and Retrieval (MMIR), these terms typically have
structural and/or semantic relationships to each other. Thus, graph-based structures are
appropriate candidates to represent multimedia features including their relationships.

To fuse and integrate all of these features, a unifying framework is required. For
example, Jean-Baptiste et al. [18] discusses a framework utilizing various sources of video-
content (video, audio, and language streams) being fed into a self-supervised multimodal
versatile network, which is can enrich information of these various sources. However,
frameworks that fuse and integrate features of non-combined multimedia assets (i.e.,
videos, images, audio, and texts from different sources), rarely exist. Hence, our previous
work [19–22] introduced and implemented a Generic Multimedia Annotation Framework
(GMAF), which provides an extendable representation schema and processing architecture
for fusing detected multimedia features and generating Multimedia Feature Graph (MMFG)
data structures. A detailed definition of the MMFG is given in [22] and the most relevant
objectives are outlined in the next section.

2.2. The Multimedia Feature Graph

The Multimedia Feature Graph (MMFG) is a weighted and directed graph [23] repre-
senting the features of multimedia assets and is defined as MMFGAsset = (N, E), where
N is the set of nodes and E the set of edges between these nodes. Both N and E are
employed to represent special multimedia features and their relationship, that have been
detected within an asset (e.g., instances of object, region, colour, or relationship features).
The MMFG also fuses the detected information into a single model. A complete description
of the MMFG is given in [22], a reference implementation is available on GitHub [20], and a
visualization of a small section of a MMFG is shown in Figure 1, which illustrates several
feature types in different colours (e.g., detected objects in blue, detected landmarks in
yellow, synonyms in green, spacial relationships in red).

Figure 1. Snippet of the Multimedia Feature Graph (MMFG) of one exemplary asset after exporting
it to GraphML (yEd [24] visualization).



Big Data Cogn. Comput. 2021, 5, 33 4 of 28

A complex MMFG contains feature representations for example from text (e.g., meta-
data or Social Media), images (e.g., objects, colours, spacial attributes), video, and audio
information (if applicable) and Figure 1 shows an exemplary MMFG snippet, where the
following feature categories are visible: object detection, dominant colours, spacial relation-
ships, landmark detection. In general, the MMFG is a typical graph based data-structure for
representing multimedia features. In Section 2.3, methods for representing and processing
graphs are discussed in more detail.

2.3. Graph Processing

From a mathematical perspective, graphs can be represented typically through their
Adjacency Matrix. Based on this, several further transformations can be made. One ex-
ample for this is the transformation of a graph into a n-dimensional vector-space to allow
further operations including similarity calculation [25]. For weighted graphs (e.g., Multi-
media Feature Graphs), typically matrices are employed, which extend Adjacency Matrices
by the integration of the edges’ weight-information [26], also enabling the application of
mathematical concepts to graphs [25], which are called Valuation Matrices in the remainder
of this paper. Similarity calculation on matrices can be performed with the Eigenvalue
Method [27], which reduces a square matrix M to a single rational number λ by assuming
that there exists a vector v with M · v = λ · v. Then, similarity calculations can be performed
on λ instead of the whole matrix. However, each mathematical approach usually has a
complexity of O((n + e)2) (n nodes and e edges). Several approaches are described to
improve this for a particular set of data or within particular conditions [28–30], but the
performance of these algorithms for large data structures, like feature graphs of multimedia
objects, must still be improved. One approach for this is given in [31], which utilizes a
highly scalable GPU-based algorithm to improve the performance of similarity search
within graph structures to flatten the exponential growth of graph-based algorithms.

In the remainder of this paper we describe and evaluate the Graph Code Encoding
Algorithm, Query Construction, and Retrieval Execution with Graph Codes, as an extension
of graph-based Adjacency Matrices for MMIR applications. These algorithms can perform
comparison tasks based on graph data in O(n + e), instead of exponential growth.

2.4. Graph Codes and Their Encoding

This section discusses the mathematical and algorithmic concepts of a 2D graph
representation and its relevance for MMIR. We have introduced Graph Codes in [22]. They
are applicable to any kind of feature graph, but we specifically designed them for MMIR.
They should provide a huge benefit in the area or multimedia indexing and retrieval as a
technical representation basis for graph algorithms. We use them to represent MMFGs and
to transform these into another mathematical space for fast and efficient MMIR.

Our Graph Code Encoding algorithm [22] uses the Valuation Matrix VM of a given
MMFG as a basis. It is also possible to calculate Graph Codes based on n-dimensional
vector-spaces and a projection of these into a 2D matrix-space, producing a similar result
as the algorithm based on the Valuation Matrix. We chose to employ Valuation Matrices,
as this approach is expected to require fewer calculations than vector-space transformations.
As an example, we employ a small subgraph of the MMFG of Figure 1 containing the most
relevant structures to illustrate the concepts presented in this paper. Thus, we define our
example-graph MMFGex as shown in Figure 2.

Figure 2. Excerpt of Figure 1 used as an example-graph MMFGex.
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Valuation Matrices contain one row and column for each node, always resulting in
square matrices. Edges incident on nodes n1 and n2 are represented in the matrix with
their weight or a value of 1 at row n1 and column n2, i.e., position (n1, n2). In case of
the example above, the set of nodes N is given by N = {Person, Head, Human Being,
Individual, Hat, above}, represented by a value of 1 in one of the diagonals of the matrix.
Thus, the Valuation Matrix VM is defined as (see also Table 1 and Figure 3):
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any application. In the context of this paper, we chose an arbitrary selection of value
ranges representing type attributes of nodes and edges for the Graph Code representation.
If we apply such a fenc to the above example (object-node = 1, synonym-node = 2, child-
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the encoded Valuation Matrix VMenc i.e., the corresponding Graph Code GC is illustrated in
Figure 3 and Table 2, where node representing fields are painted in bold. Node types in
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Graph Codes employ a encoding function fenc, which calculates a numeric value for
each non-zero position of a Valuation Matrix based on node or edge type and the corre-
sponding attributes. The function fenc can be adjusted deliberately to meet the requirements
of any application. In the context of this paper, we chose an arbitrary selection of value
ranges representing type attributes of nodes and edges for the Graph Code representation.
If we apply such a fenc to the above example (object-node = 1, synonym-node = 2, child-
relationship = 3, synonym-relationship = 4, relationship = 5, spacial-relationship-node = 6),
the encoded Valuation Matrix VMenc i.e., the corresponding Graph Code GC is shown in
Figure 4 and Table 2, where node representing fields are painted in bold. Node types in
Table 2 are coloured according to Figure 1 and represented by the fields in the diagonal of
the matrix. Edge types are coloured (3 = orange, 4 = purple, 5 = yellow).
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of MMFGex.

In future encodings, attributes, weights, or other information about nodes and edges
can be encoded with more complex functions resulting in arbitrary natural numbers. In our
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model, we apply the encoding function fenc to each matrix field and base it on e.g., three-
byte-integer values between 0 and 16.7 million (=maxc in the later equations). The reason
for this is that the resulting Graph Codes can then be interpreted as bitmap images,
which provides some benefits in visualization during testing, evaluating, and manually
proving results. Although in general, fenc can be arbitrary defined according to the MMIR
application’s requirements.

Table 2. Table representation of GCex including row and column descriptors of Figure 2.
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above 0 0 0 0 0 6

Based on Graph Codes, we introduce algorithms for Query Construction and Query
Execution in the modeling section (Section 3) of this paper, which will evaluated in Section 5.
To demonstrate their effectiveness and efficiency, fully annotated sample data are required.

2.5. Annotated Sample Datasets

To evaluate multimedia retrieval algorithms, an appropriate set of sample data must
be available. As the evaluation has to demonstrate effectiveness, efficiency and quality,
we define the following criteria for the identification and selection or the generation of
sample datasets:

• Content description annotations: to determine the effectiveness of an algorithm,
a comparison of the detected features with manually approved content description
annotations must be possible. Thus, the sample dataset must include correct and
complete content description annotations.

• Level of detail: processing of each sample must produce a high level of detail, which is
an important prerequisite for measuring effectiveness. For image or video processing,
the resolution is a informative indicator for the resulting level of detail. For audio
processing, the bit-rate is a relevant measure for the level of detail.

• Number of samples: to calculate reliable figures, the dataset has to contain a relevant
number of samples to be processed.

To analyze algorithms for multimedia processing, several datasets can be employed.
One of the most comprehensive collections of annotated text-based sample data is main-
tained by the Text Retrieval Conference (TREC) [32], a comprehensive overview of audio
datasets (e.g., The Spoken Wikipedia Corpora) is given by [33] and a commonly used
dataset for video processing is the Youtube8M [34]. For image processing, the Flickr30k
set [35], the DIV2K dataset [36], the IAPTRC12 dataset [37], or the PASCAL VOC dataset [38]
are some of the most relevant collections.

For our evaluation, we initially focus on image processing, as feature extraction of
images provides a high level of detail and the sample datasets provide suitable data for
the experiments. Thus, a high-resolution dataset with accurate annotations is required to
perform a recursive feature extraction and to measure efficiency comparisons of algorithms.
Hence, we selected the Flickr30k, Div2K, and the PASCAL dataset.

In this section, we discussed feature extraction algorithms, the MMFG, mathematical
background for graph processing, as well as Graph Codes and a basic encoding algorithm
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for them. We also identified candidates for sample datasets for the evaluation of these
algorithms. Some challenges remain and are described in the next subsection.

2.6. Discussion and Open Challenges

Current state of the art technologies provide a sufficient set of, in our view, appropriate
algorithms, tools, and concepts for extracting features of multimedia content. Integrating
data structures as e.g., the MMFG can fuse these information and combine them into a
large feature graph structure. However, the need to fuse many features into graphs to
increase effectiveness contradicts the demand of higher performance for retrieval, as graph
traversal algorithms become less efficient with an increasing number of nodes and edges.

Hence, finding a solution that both provides a high level of detail for effective retrieval
and a highly performant and efficient model for similarity algorithms is one open challenge.
This includes the application of the Graph Code encoding to MMIR, the selection or
preparation of an appropriate test collection, and the evaluation of the corresponding
algorithms and modeling.

3. Modeling and Design

A typical information retrieval function or algorithm IR for a given query Q and a
result set R can be generally defined as:

IR(Q)→ R (1)

In the context of this paper, Q is represented by a MMFVGQuery object representing
the query-features, and R is a ranked list of MMFGs. The retrieval function IR calculates
the relevance based on the similarity between MMFVGQuery and each element of the set of
existing MMFGs. For graphs like the MMFG, a metric for similarity would be, for example,
the Cosine Similarity [29]. Thus, for MMFGs, the retrieval function is defined as:

IRMMFG(MMFGQuery) = {MMFG1, . . . , MMFGn} (2)

In case of Graph Codes and the corresponding algorithms, each MMFG is represented
by its Graph Code GCMMFG and the retrieval function is:

IRGC(GCQuery) = (GC1, . . . , GCn) (3)

The result of IRGC is a ordered vector of all Graph Codes of the collection, in which
∀GCi ∈ IRGC : GCi > GC(i+1). The comparison of Graph Codes has to be based on
a well-defined metric for similarity, in which both the mathematical aspects of matrix
comparison, and the semantic aspects of Graph Code representation have to be considered.
So far, the design of this metric can only consider node and edge types of Graph Codes to
calculate the similarity of MMFGs. However, for each node type feature vocabulary terms
exist, which represent their values. Thus, in the next sections, we will define Graph Code
vocabularies, dictionaries and the Graph Code similarity metric, that is needed for MMIR.

3.1. Graph Code Feature Vocabularies and Dictionaries

Here, we will introduce the definitions for vocabularies, their dictionaries, and there-
fore feature term vocabulary representations of Graph Codes. Based on these definitions,
a metric for similarity calculations going beyond node and edge types, based on Graph
Codes can be defined. Summarizing our current example, matrices can represent only node
and edge types so far. In each MMFG, the set of n nodes representing distinct feature terms
can be regarded as unique identifiers for the MMFG’s feature term vocabulary FVTMMFG:

FVTMMFG = { f t1, . . . , f tn} (4)

This set of a MMFG’s vocabulary terms thus represents the elements of a correspond-
ing Graph Code’s Dictionary, i.e., the set of all individual feature vocabulary terms of a
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Graph Code. However, it is important to uniquely identify the feature vocabulary term
assigned to a field of a Graph Code. Thus, we introduce a Graph Code Dictionary for
each Graph Code, which is represented by a vector dictGC and provides a ordered repre-
sentation of the set FVTMMFG with uniquely defined positions for each MMFG’s feature
vocabulary term. The elements in dictGC can be ordered according to the corresponding
MMFG, e.g., by applying a breadth-first-search, but also other ordering strategies could be
applied. As the ordering does not effect the Graph Code algorithms and concepts as such,
in the following examples, we chose a manual ordering to maximize illustration. In the
Graph Code matrix representation, each node field (in the diagonal) of a Graph Code can
now be unambiguously mapped to an entry of its Graph Code Dictionary vector, which
can be represented as follows:

dictGC = ( f t1, . . . , f tn) (5)

Applied to the Graph Code of the previous example, the set of feature vocabulary
terms FVTex would be {Person, Head, Human Being, Individual, Hat, above}, in which the
elements do not have any order. The corresponding vector dictex would be:

dictex = (Person, Head, HumanBeing,

Individual, Hat, above)

and—in contrast to the set representation—uniquely identifies each vocabulary term by its
position within the vector. Thus, dictex can also be regarded as a indexed list:

Index i 1 2 3 4 5 6

f ti Pe
rs

on

H
ea

d
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um

an
Be

in
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du

al

H
at

ab
ov

e

When comparing the similarity of two Graph Codes, it is important to compare
only feature-equivalent node fields in the diagonal of each matrix to each other. Each
Graph Code has its own, individual dictionary-vector dictGC, and another Graph Code
will have a different dictionary-vector according to the content of its represented MMFG,
typically dictGC1 6= dictGC2. Feature-equivalent node fields of Graph Codes can be deter-
mined through their corresponding Graph Code Dictionaries, as these fields will have
positions represented by an equal feature vocabulary term of each corresponding dictio-
nary. For comparison, only the set of intersecting feature vocabulary terms of e.g., two
Graph Codes is relevant, as non-intersecting feature vocabulary terms would represent
non-common MMFG feature nodes, which cannot be similar. Thus, the set of intersecting
feature vocabulary terms FVT∩1,2 of e.g., two MMFGs can be defined as:

FVT∩1,2 = { f t1, . . . , f tn} = VMMFVG1 ∩VMMFVG2 (6)

The methodology of intersecting sets can be also applied to Graph Code dictionaries.
The intersection of two vectors dict∩1, 2 can be defined correspondingly as:

dict∩1,2 = dictGC1 ∩ dictGC2 (7)

To illustrate the calculation of dict∩, we introduce a second exemplary Graph Code
GCex2 based on a MMFGex2 as shown in Figure 5 and the corresponding Table 3.
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Figure 5. Example instance graph MMFGex2 based on the MMFG structure.

Table 3. Representation of GCex2 including row and column descriptors.

ab
ov

e

D
og

H
ea

d

A
ni

m
al

H
at

above 5 0 0 0 0
Dog 0 1 3 4 0

Head 0 0 1 0 3
Animal 0 0 0 2 0

Hat 6 0 0 0 1

The set FVTex2 in this case is above, Dog, Head, Animal, Hat} and the set FTV∩1,2 of
intersecting feature vocabulary terms is above, Head, Hat}. The dictionary-vector dictex2
thus is:

dictex2 = (above, Dog, Head, Animal, Hat)

illustrated as a indexed list, dictex2 would be:

Index i 1 2 3 4 5
f ti above Dog Head Animal Hat

The vector dict∩ex1,2 represents the dictionary of intersecting vocabulary terms and
only contains the subset of vocabulary terms of dictex, where a equal vocabulary term can
be found in dictex2. The order of intersecting vocabulary terms in dict∩1,2 is given by the
order of dictex:

dict∩ex1,2 = (above, Head, Hat)

From an algorithmic perspective, this means that all elements of dictex are deleted that
cannot be found in dictex2. Typically, the index position of dict∩1,2 is different from both
dict1 and dict2. For our example, the indexed list representation of dict∩ex1,2 would be:

Index i 1 2 3
f ti above Head Hat

Based on these dictionary-vectors, a translation of equivalent Graph Code positions
can be performed, as each feature vocabulary term has a unique position within each of
the Graph Code’s dictionaries.

Applications will typically utilize a collection of MMFGs and their corresponding
Graph Codes. The overall feature term vocabulary FVTColl = { f t1, . . . , f tc} containing
c vocabulary terms of such a collection of n MMFGs can be defined as the union of all
MMFG’s feature term vocabularies and also be represented by the union of all Graph Code
Dictionaries dict∪:

FVTColl =
n⋃

i=1

FVTMMFGi (8)

∀i, j < n : dict∪ = dicti × dictj (9)

In this dict∪ dictionary-union-vector, the ×-operation for calculating the union of
dictionary-vectors is implemented by traversing all the collection’s dicti dictionaries and
collecting unique dictionary vocabulary terms into a single dictionary-vector. In case of
our example with dictex and dictex2, the calculated dict∪ = (Person, Head, Human Being,
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Individual, Hat, above, Dog, Animal). If a dict∪ is calculated for the complete collection of
Graph Codes, it can be regarded as a global dictionary-vector with collection-wide unique
positions for each feature vocabulary term.

As we will show in the remainder of this paper, an exemplary MMFG could contain
about 500 feature nodes and 2000 edges, thus the resulting Graph Code matrix would
contain 500 rows and columns and 2500 non-zero entries (500 for the nodes in one diagonal,
2000 for edges between these nodes). Processing many different MMFGs will result in
many different Graph Codes having about similar size, but different vocabulary terms,
leading to an increase of VColl . The Oxford English Dictionary [39] e.g., contains 170,000
English words (Note: translation and multilingual support is not in scope of this paper and
does not affect the general concept of Graph Codes). If we assume, that applications exist,
which produce English terms as representations for feature-nodes, MMFGs representing
the overall vocabulary would result in matrices of size 170,000 × 170,000 resulting in
28.9 billion matrix fields. Calculations on this large number of fields will be no longer
efficient enough for MMIR.

Of course, in some use cases, an application-wide dictionary can be required. How-
ever, in some other applications, it would be better to apply a much smaller dictionary.
Hence, two major approaches of modeling dictionaries can be proposed:

Application-wide dictionary: in this scenario, we assume that any Graph Code will
be processed with the dictionary-vector terms dict∪. If in an MMIR application all images
are almost similar, a processing and re-processing approach can automatically increase or
decrease the collection’s vocabulary terms according to the analysis of new content. All
existing Graph Codes have to be adjusted whenever new indexing terms are detected (the
size of dict∪ increases) or whenever existing multimedia feature content is removed from
the collection (the size of dict∪ decreases). The key advantage of this approach is, that
all Graph Codes have exactly the same size and identical positions represented by their
dictionary-vectors. This makes comparisons easier as no further transformation is required.
It also simplifies the employment of Machine Learning algorithms. However, a permanent
re-processing of all existing Graph Codes can be computationally expensive. In this case,
the following scenario should be preferred.

Dictionaries for smaller combinations of individual vocabularies: if images from
many different areas (i.e., with many different feature vocabulary terms) have to be pro-
cessed, two Graph Codes can be compared based on the intersection of their individual
Graph Code’s dictionary vectors dict∩. In this case, a mapping of corresponding feature
vocabulary terms by their position within each dictionary-vector can be performed and
equivalent node matrix fields can be calculated by a simple transformation (i.e., re-ordering)
of one of the dictionary-vectors. As this also eliminates lots of unnecessary operations (e.g.,
comparing unused fields of dict∪), this approach can be very efficient, when Graph Codes
vary a lot within a collection.

Applied to GCex and GCex2 of our above example, the application-wide dictionary
dict∪ would result Graph Codes with a size of 9× 9 matrix fields, whereas dict∩ would
result in a intersection matrix of 3× 3 fields. This intersection matrix M∩(GC) can be
calculated of a GC by removing any rows and columns, that are not part of dict∩. Table 4
shows the intersection matrices of GCex and GCex2.

Table 4. Intersection matrices of GCex and GCex2.

M∩(GCex)

H
ea

d

H
at

ab
ov

e

M∩(GCex2)

ab
ov

e

H
ea

d

H
at

Head 1 3 0 above 5 0 0
Hat 0 2 5 Head 0 1 3

above 0 0 6 Hat 6 0 1

For the comparison of these intersection matrices, we would like to apply the standard
matrix subtraction. However, due to the different orders of dictex and dictex2, the matrix
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field positions of the matrices do not represent the same feature vocabulary terms. For ex-
ample, the field (2,1)of GCex represents the relationship between Hat and Head, but the
equivalent relationship in GCex2 is located in field (3,2). To solve this, we introduce a
equivalence function fequ(M∩), which transforms a Graph Code intersection matrix or
the corresponding dictionary-vector in a way, that the corresponding dictionary-vector is
ordered according to dict∪.

Thus, equivalence of a matrix field (mi,j) in M∩(GCi) and a matrix field (nk,l) in
M∩(GCj) and corresponding dictionary vectors dicti and dictj can be defined as: ∀(mi,j) ∈
M∩(GCi), ∀(nk,l) ∈ M∩(GCj):

M∩(GCi) ∼ fequ(M∩(GCj))⇔ (10)

dicti(i) = fequ(dictj(k)) ∧ dicti(j) = fequ(dictj(l)) (11)

In the case of comparing only two Graph Codes, dict∪ is automatically ordered ac-
cording to the first Graph Code. Thus, in this case, the second dictionary-vector would be
re-ordered to match the order of the first one. This reordering is applied to the correspond-
ing intersection matrix of the Graph Code. In our example, dictex2 = (above, Head, Hat)
would be reordered to match dictex = (Head, Hat, above). Thus, the resulting reordered
intersection matrix would be as shown in Table 5.

Table 5. Reordered and equivalent intersection matrix of GCex.

fequ(M∩(GCex2))

H
ea

d

H
at

ab
ov

e

Head 1 3 0
Hat 0 1 6

above 0 0 5

Based on this description of the representation of MMFGs as on the definition of
Graph Code feature vocabularies, we will now define a metric to calculate similarity of
Graph Codes as a basis for MMIR retrieval applications.

3.2. Graph Code Similarity

In this section, we define a metric, that enables MMIR application to compare Graph
Codes and thus utilize them for retrieval. In case of Graph Codes and their matrix-based
representation, the calculation of similarity requires the consideration of rows, columns
and fields representing nodes and edges (i.e., node relationships) of a MMFG. These nodes
and relationships have to be of equivalent node or relationship type for comparison. This
means, that it is important to compare the correct matrix field position to each other, which
typically is different in e.g., two Graph Codes. Matrix field positions employed for the
definition of a metric represent nodes (i.e., detected features) or edges (i.e., detected node-
relationships), edge-types (i.e., detected node relationship types), and their type values.
The definition of a metric for Graph Codes has to be applicable for matrices, where rows
and columns represent MMFG nodes and the corresponding feature vocabulary terms.
Matrix cells represent node types (in one diagonal) and all other non-zero matrix fields
represent edge types and their values. Based on these characteristics of Graph Code we
can define a metric:

MGC = (MF, MFR, MRT) (12)

as a triple of metrics containing a feature-metric MF, a feature-relationship-metric MFR
and a feature-relationship-type-metric MRT .

The Graph Code Feature Metric
The feature-metric MF can be employed to calculate the similarity of Graph Codes

according to the intersecting set of dictionary vocabulary terms. MF is defined as the
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ratio between the cardinality of dict∩ the intersecting dictionary vocabulary terms and the
cardinality dicti a Graph Code’s dictionary vector. In the following formulas, the notation
|v| for vectors denotes the cardinality of a vector v, i.e., the number of elements in this
vector:

MF(GCi, GCj) =
|dict∩|
|dicti|

(13)

Thus, the more features are common in e.g., two MMFGs, the higher the similarity
value based on MF - independent of the relationships between these corresponding MMIR
features. In case of the example above, the numerical distance between GCex and GCex2
based on the metric MF is:

MF(GCex, GCex2) =
|dict∩ex1,2|
|dictex|

=
3
6
= 0.5

The Graph Code Feature Relationship Metric
The feature-relationship-metric MFR is the basis for the similarity calculation of

MMFG-edges, i.e., the non-diagonal and non-zero fields (representing edges of delib-
erate types) of the Graph Code’s matrix representation. This metric is only applied to
equivalent fields (i.e., relationships with the same source and target node) of intersection
matrices M∩ of two Graph Codes. We base this metric on the non-diagonal fields of the
Adjacency Matrix AM(M∩) (i.e., the matrix containing only the values 1 and 0). Then,
MFR can be defined as ratio between the sum of all non-diagonal fields and the cardinality
of all non-diagonal fields. Sum and cardinality of all non-diagonal fields are calculated by
subtracting the number of nodes n from the sum or cardinality of all fields:

MFR(GCi, GCj) =
∑ AM(M∩i,j)− n
|AM(M∩i)| − n

(14)

Thus, MFR represents the ratio between the number of non-zero edge-representing
matrix fields and the overall number of equivalent and intersecting edge-representing
matrix fields of e.g., two Graph Codes. Note, that in this way, the metric MFR counts all
edges existing between source and target nodes, independent of the equivalence of the
edges’ types.

Applied to our example, the AM(M∩(GCex)) and the equivalent matrix fequ(M∩(GCex2))
is shown in Tables 6 and 7.

Looking at the two Graph Codes in Tables 6 and 7, there are six potential positions
representing edges: three fields in the upper right of the diagonal and three fields in the
lower left. Out of these possible positions, only two contain edges. These are located in
matrix positions (2,1) and (3,2). Thus, only two out of six possible edge representing matrix
field positions have a non-zero value. Thus, the numerical distance of the metric MFR:

MFR(GCex, GCex2) =
∑ AM(M∩i,j)− n
|AM(M∩i)− n| =

5− 3
9− 3

=
2
6
= 0.33

Note, that currently only the existence of an edge—independent from its type—is
employed for the metric MFR. However, also the type of each relationship can indicate ad-
ditional similarity. Hence, we will introduce an edge-type-based metric in the next section.

The Graph Code Feature Relationship Type Metric
The metric MRT is based on the feature-relationship-types of Graph Codes. As the

Graph Code encoding function fenc encodes different MMFG edge-types with different
base values (see Section 2.4), feature-relationship-type-similarity can only exist, when the
edge-types represented by equivalent matrix fields of Graph Codes are equal. In case of
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MRT , calculations are performed no longer on the adjacency matrices of Graph Codes,
but on the M∩ matrices of the Graph Codes (see Table 8).

Table 6. Calculation of MFR based on adjacency matrices.

AM(M∩(GCex))

H
ea

d

H
at

ab
ov

e

Head 1 1 0
Hat 0 1 1

above 0 0 1

Table 7. Calculation of MFR based on adjacency matrices.

AM( fequ(M∩(GCex2)))

H
ea

d

H
at

ab
ov

e

Head 1 1 0
Hat 0 1 1

above 0 0 1

Table 8. Calculation of MRT based on Graph Code matrices.

M∩(GCex)

H
ea

d

H
at

ab
ov

e

fequ(M∩(GCex2))

H
ea

d

H
at

ab
ov

e

Head 1 3 0 Head 1 3 0
Hat 0 2 5 Hat 0 1 6

above 0 0 6 above 0 0 5

A matrix field is equal to another, if the subtraction of their values returns zero. If all
equivalent fields are equal, the sum of these fields is zero. While MFR is based on the
pure existence of a non-zero edge representing matrix field, MRT additionally employs the
value of this matrix field (representing the relationship type) and hence represents the ratio
between the sum of all non-diagonal matrix fields and their cardinality:

MRT(GCi, GCj) =
∑

n,i 6=j
i,j (|M∩i −M∩j|)
|M∩i| − n

(15)

In our example, the difference of these two intersection matrices for non-diagonal
fields (i.e., i 6= j) is calculated as:

|M∩(GCex)−M∩(GCex2)| =




0 0 0
0 0 1
0 0 0




Thus, the mathematical sum of this matrix is 1. This means, that one out of six possible
fields had a different edge type value. The numerical distance of the metric MRT for these
two Graph Codes can be calculated as:

MRT(GCi, GCj) =
∑

n,i 6=j
i,j (|M∩i −M∩j|)
|M∩i| − n

=

1
9− 3

=
1
6
= 0.16



Big Data Cogn. Comput. 2021, 5, 33 14 of 28

Thus, in terms of our example, the overall similarity MGC between GCex and GCex2 is:

MGC(GCex, GCex2) = (MF, MFR, MRT) =

(0.5, 0.33, 0.16)

This means, that the similarity based on common vocabulary terms MF is 0.5, the sim-
ilarity based on common edge positions MFR is 0.33, and the similarity of equal edge types
MRT is 0.16.

Based on the metrics for Graph Codes, MMIR retrieval can utilize comparison func-
tions to calculate a ranked list of results. In the next and subsequent part, we will illustrate
the Graph Code query construction and retrieval execution algorithms.

3.3. Querying with Graph Codes

Query Construction based on Graph Codes is possible in three ways: a manual
construction of a query Graph Code GCQuery, the application of the Query by Example
paradigm, or an adaptation of existing Graph Codes. These three options are described in
this section.

A manual construction of a MMFGQuery by users can result in a GCQuery Graph Code,
which then is employed for querying. This manual construction could be performed
by entering keywords, structured queries (e.g., in a query language like SPARQL [40]),
or also natural language based commands [41] into a MMIR application’s query user
interface. The MMFGQuery and corresponding GCQuery in this case is created completely
from scratch.

Query construction can be based on the Query by Example paradigm [42]. In this case,
a GCQuery is represented by an already existing Graph Code, which typically is selected by
the user to find similar assets in the collection of a MMIR application.

An adaptation of an existing Graph Code can lead to a GCQuery as well. A refinement
in terms of Graph Codes means, that e.g., some non-zero fields are set to zero, or that some
fields get new values assigned according to the Graph Code encoding function fenc. From a
user’s perspective, this can be performed by selecting detected parts of corresponding
assets and choosing, if they should be represented in the query or not.

A prototype for all three options of Graph Code querying is illustrated in [22] and
available on GitHub [20]. The adaptation of existing MMFGs in terms of the Graph Code
matrices is shown in Table 9, which shows an exemplary GCQuery and an exemplary
adapted version GC′Query.

Table 9. Exemplary query adaptation based on Graph Codes.

GCQuery

Pe
rs

on

Ji
m

W
at

ch

R
ed GC′

Query

Pe
rs

on

Ji
m

W
at

ch

R
ed

Person 1 3 5 1 Person 0 0 0 0
Jim 0 2 0 0 Jim 0 0 0 0

Watch 0 0 1 1 Watch 0 0 1 1
red 0 0 0 1 red 0 0 0 1

To further optimize the execution of such a query, we construct a compressed Graph
Code GCQuery-C by deleting all rows and columns with zero values from an adapted Graph
Code. This GCQuery-C provides an excellent basis for comparison algorithms, as it typically
contains very few entries. In the previous sections, we showed, that this would also reduce
the number of required matrix comparison operations. In our example, GCQuery-C would
semantically represent a search for images containing a red watch (see Table 10).
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Table 10. The compressed GCQuery-C Graph Code.

GCQuery-C

W
at

ch

R
ed

Watch 1 1
red 0 1

Instead of traversing feature graphs to match sub-graphs, a GCQuery comparison based
on Graph Codes employs matrix-operations to find relevant Graph Codes based on their
similarity to the GCQuery implemented by the metric MGC. This approach facilitates the
use of Machine Learning, Pattern Matching, and specialized hardware for parallelization
of query execution, which is described in more detail in the next section.

3.4. Information Retrieval Based on Graph Codes

In Section 3, we have already introduced the retrieval function:

IRGC(GCQuery) = (GC1, . . . , GCn)

which returns a list of Graph Codes ordered by relevance implemented on basis of the
similarity metric:

MGC = (MF, MFR, MRT)

and thus directly represents the retrieval result in form of a ranked list. The calculation of
this ranked list can be performed in parallel, if special hardware is available. In many MMIR
applications, this calculation can also be done in advance. For a given query Graph Code
GCQuery, a similarity calculation with each Graph Code GC of the collection is performed,
based on the Graph Code metric MGC. Compared to graph-based operations, matrix-based
algorithms can be highly parallelized and optimized. In particular, modern GPUs are
designed to perform a large number of independent calculations in parallel [43]. Thus,
the comparison of two Graph Codes can be performed in O(1) on appropriate hardware,
which means that the execution of a complete matrix comparison can be fully parallelized
and thus be performed in a single processing step. It is notable, that even current smart-
phones or tablets are produced with specialized hardware for parallel execution and ML
tasks like Apple’s A14 bionic chip [44]. Hence, the Graph Encoding Algorithm performs
well also on smartphones or tablets. In the evaluation section of this paper (Section 5), we
give detailed facts and figures. The basic algorithm for this comparison and ordering is
outlined in pseudocode below:

for each GC in collection
--- parallelize ---
calculate the intersection matrices
of GC_Query and~GC

--- parallelize each ---
calculate M_F of GC_Query and GC
calculate M_FR of GC_Query and GC
calculate M_RT of GC_Query and GC
--- end parallelize each ---

compare
--- end parallelize~---

order result list according to
value of M_F

value of M_FR where M_F is equal
value of M_RT where M_F and M_FR are equal

return result list
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To calculate the ranked result list, this algorithm employs the three metrics MF, MFR
and MRT in such a way, that first, the similarity according to MF (i.e., equal vocabulary
terms) is calculated. For those elements, that have equal vocabulary terms, additionally
the similarity value of MFR for similar feature relationships is applied for ordering. For
those elements with similar relationships (i.e., edges), we also apply the metric MRT , which
compares edge types. So, the final ranked result list for a GCQuery Graph Code is produced
by applying all three Graph Code metrics to the collection.

3.5. Discussion

In this section, we presented the conceptual details, their mathematical background
and formalization, a conceptual description of the and algorithms for processing Graph
Codes and their application for MMIR. We introduced Graph Code feature vocabularies
and dictionaries as a foundation for further modeling. Particularly Graph Code dictionary
vectors are the basis for several operations and provide a clearly defined, indexed list of
vocabulary terms for each Graph Code. The design of MMIR applications can employ
application-wide dictionaries or dictionaries for smaller or individual vocabularies, which
provides high flexibility in the application design when using Graph Codes.

Hence, we also introduced an example to illustrate the corresponding matrix op-
erations, which is also employed as a basis for the calculation of Graph Code similarity.
Similarity of Graph Codes is defined by a metric MGC = (MF, MFR, MRT), which addresses
different properties of the underlying MMFG. Firstly, MF provides a measure for similarity
based on the vocabulary terms of Graph Codes. Secondly, MFR checks, if equal edge rela-
tionships exist between the two Graph Codes and thirdly, MRT compares the relationship
type of existing edges. With this metric-triple, a comprehensive comparison of Graph
Codes can be implemented. Based on this metric, we discussed the construction of Graph
Code queries, which can be performed manually, as Query by Example, or in terms of a
adaptation of existing Graph Codes and will result in a query Graph Code. This query
object can be compressed and will provide an excellent basis for comparison algorithms
based on the metric MGC. We also showed, that MMIR retrieval based on Graph Codes can
be highly parallelized.

In general, all these introduced concepts show, that it is possible to perform calcula-
tions in a 2D matrix space instead of traversing graph structures and to integrate features of
various sources into a single feature graph. However, to demonstrate that these calculations
provide the expected advantages compared to graph-based operations, a proof-of-concept
implementation and corresponding evaluation is required. Hence, we will now outline the
most important facts and show, that by using Graph Codes a significant improvement of
efficiency and effectiveness in MMIR applications can be achieved in the following sections
of this paper.

4. Implementation and Testing

For the implementation of the presented algorithms and concepts, we chose Java [45]
and Swift [46] as programming languages. As our corresponding frameworks like the
Generic Multimedia Analysis Framework [19] are already implemented in Java, we also
chose Java as a programming language for the Graph Code algorithms and built compo-
nents according to the modeling and design section of this paper. For the later evaluation,
we also implemented the Graph Code Retrieval algorithm in Swift for IOS [46] to evaluate
it on an iPad Pro [47], as we wanted to investigate the use of parallelization in terms of the
A14 bionic chip [44] in this device. The implementation basically follows the algorithms
and functions described in the previous section, so only a few selected examples will be
discussed here.

4.1. Selected Implementation Details

The details of the implementation including source code can be found at GitHub [20],
where also a Jupyter notebook [48] is available. In addition to this Java implementation, we
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also built a second implementation based on the graph-database Neo4J [49], which we can
use for comparison. Hence, the GMAF has been extended to provide an additional MMFG-
export option in the Neo4J format. Thus, in both Neo4J and the Java implementation,
the same MMFGs can be used for further processing.

For the implementation of the GMAF, we applied a software design based on the
GoF-Patterns for reusable software components [50]. As we chose Java as the programming
language for the GMAF prototype, these patterns are aligned with the programming
language’s constraints. Figure 6 e.g., shows the source-code of the Query Construction
by keywords, which follows the Command Pattern. Each keyword entered by the user is
employed to fill the vocabulary terms of a Graph Code and then processed on the MMFGs
of the collection.

public class QueryByKeywordCommand extends AbstractCommand {
private String query;

public QueryByKeywordCommand(String q) {
query = q;

}

public void execute() {
// Comma Separated Query with Vocabulary Terms
String[] str = query.split(",");
Vector<String> vocTerms = new Vector<String>();
for (String s : str) {

if (!vocTerms.contains(s)) {
if (!s.equals(""))
vocTerms.add(s.trim());

}
}

// Generate a Query-GraphCode
GraphCode gcQuery = new GraphCode();
gcQuery.setDictionary(vocTerms);

// Execute this query on the collection of MMFGs
MMFGCollection.getInstance().query(gcQuery);

}
}

Figure 6. Code snipped for querying by keywords.

Another selected example is the calculation of the ranked result list based on Java
standards, which is shown in Figure 7. As Java internally uses a so called comparator
mechanism to efficiently sort indexed lists (in this case a Vector), we implemented the
frameworks to utilize these structures. The Pseudo-Code of Section 3.4 is thus transformed
into a Java-complying form, where the logical processing rules of cascaded metrics are
represented by a mathematical operation to achieve single values for comparison.
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// sort collection according to the calculated similarity
Collections.sort(collection, new Comparator<MMFG>() {

public int compare(MMFG mmfg1, MMFG mmfg2) {
float[] metric_a = mmfg1.getSimilarity();
float[] metric_b = mmfg2.getSimilarity();

// calculate numeric values to support
// java-compatible comparison
float a = metric_a[0] * 100000 +

metric_a[1] * 100 + metric_a[2];
float b = metric_b[0] * 100000 +

metric_b[1] * 100 + metric_b[2];

return (int)(b - a);
};

});

Figure 7. Java implementation of the ranked list retrieval.

A screenshot of the GMAF prototype is given in Figure 8. This screenshot shows
a key-word based query, the ranked result list in the centre of the screenshot and the
calculated metric values for each of the MMFGs in the collection. On the right side of the
GMAF, the current selected asset and its corresponding Graph Code is visible.

Figure 8. GMAF framework —screenshot.

4.2. Hardware and Environment

For the comparison of the Neo4J and the Java implementation, we installed both
the Neo4J graph database and the Java Graph Code algorithms on a 16 inch MacBook
Pro (2.4 GHz, 8-Core Intel Core i9 processor, 64 GB RAM, AMD Radeon Pro 5500M 4 GB
Graphics card, 2 TB SSD Storage) running MacOS 11.2 Big Sur. For comparison reasons, we
also installed Windows 10 on this machine and double-checked, that the evaluation results,
described in the next section, are equal—independent of the operating system. For further
comparisons, we also implemented the Graph Code algorithms in Swift for IOS and ran
them on an iPad Pro (13 inch, 4th generation, A14 bionic ML chip). In addition to running
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the Graph Code natively on the iPad, we also ran the algorithm in the iPad Simulator on
the MacBook Pro.

4.3. Level of Detail

The basis for our experiments are Graph Codes, which can be generated with different
Levels Of Detail (LOD) [22]. In our evaluation, this generation is performed by the GMAF
framework [19] (see also Figure 8), which provides options to determine the number of
recursions used for object detection. Recursions in GMAF mean that a detected object’s
bounding box was processed again and the identified sub-objects were fused into the
resulting MMFG. After some recursions, the bounding boxes became to small to represent
any useful detected object and the GMAF processing terminates for this object. The higher
an image’s resolution, the more recursions were possible and the higher the LOD of the
detected features. To illustrate the improvement in quality, when using Graph Codes and
the GMAF framework, we evaluated a given high-resolution image (see Figure 9) and
applied the GMAF processing with different settings for the LOD.

Figure 9. Initial testing —high-resolution image.

Table 11 shows the results of this testing. Additionally, a selection of the detected fea-
ture vocabulary terms FVTMMFG for each recursion is also given in the table for exemplary
purposes. These results were generated only by applying object detection, no additional
meta-data were attached to the MMFGs, which would further increase the number of nodes
and edges. This means, that all the vocabulary terms shown in Table 11 have been actually
detected by the GMAF framework.

Table 11. Initial testing—GMAF processing and LOD.

LOD n e Selected FV TMMFG Example Terms

0 53 204 Person, Travel, Piazza Venezia, Joy

1 71 274 Pants, Top, Pocket, Street fashion

2 119 475 Camera, Bermuda Shorts, Shoe

3 192 789 Sun Hat, Fashion accessory, Watch, Bergen County (Logo)

4 228 956 Mouth, Lip, Eyebrow, Pocket, Maroon

5 274 1189 Leather, Grey, Single-lens reflex camera
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This testing showed that the LOD could be increased, if the source image was of high
resolution. Based on this prerequisite, we focus on a detailed evaluation of our prototypical
proof-of-concept implementation in the remainder of this paper.

5. Evaluation

To evaluate the performance of our proof-of-concept implementation, we followed
well established methods for experiments to address efficiency (i.e., runtime behavior of the
MMIR application) and effectiveness (precision and recall). To validate our assumptions
with respect to modeling and implementation, we performed several experiments with
different constraints. An overview of the experiments is given in Figure 10. Input data
were taken from the DIV2K and Flickr30k datasets. Experiment 1 evaluated the efficiency
of the algorithms based on the number of input graphs n. Experiment 2 evaluated the
effectiveness of the Graph Code Algorithm based on annotations from the Flickr30k dataset.
In Experiment 1, we addressed efficiency (i.e., runtime behavior) of our Java implementa-
tion compared to a Neo4J implementation of MMFGs. To demonstrate the performance for
different sample data, we executed this experiment with three available sample datasets,
the Flickr30k dataset, the DIV2K dataset and a high-resolution sample image. In Experi-
ment 2, we investigated effectiveness based on the available annotated sample datasets
Flickr30k and DIV2K. During the Flickr30k experiment, we discovered some flaws in the
annotations of this dataset and thus split the experiment into a sub-experiment which did
not regard synonyms, and another sub-experiment which also took synonyms into account.
These experiments are discussed in the following sections.

Figure 10. Experimental setup.

As discussed in our implementation section (Section 4), the LOD is very important
for MMIR applications. However, existing datasets do not meet the requirements of a
full level-of-detail processing. The Flickr30k dataset contains only low-resolution images,
which limits number of recursions and therefore the LOG in object-detection to level 2,
as then no further objects can be identified due to the low resolution of the sample images.
The DIV2K dataset provides higher resolutions, and can be employed up to a LOD of level
3, but to measure full feature detection capabilities of the GMAF, an annotated dataset
of high-resolution images would have to be created and maintained. Currently, such a
dataset is not yet existing. We are considering creating and publishing such a dataset in
our future work.

Fortunately, for proving efficiency and effectiveness of Graph Codes, the LOD achieved
with current datasets was high enough to employ existing annotated datasets for our ex-
periments. In the following sections, we will discuss these experiments in detail.
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5.1. Experiment 1—Efficiency

The goal of this initial efficiency experiment is to compare the Graph Encoding Al-
gorithm to standard graph algorithms. Our hypothesis was that Graph Codes performed
better than graph traversal-based algorithms. For retrieval, the calculation of similarity is
very important. Thus, we compared the retrieval algorithm of Neo4J (Node similarity) to
the Graph Encoding Algorithm performed on the same machine (Java implementation)
and on Apple’s A14 Bionic in an iPad Pro. As input for the similarity calculation we used
a selection of c random images of the corresponding dataset and calculated the overall
number of nodes n and edges e. To show the correspondence between the size of the
MMFG, and the runtime behavior, we performed this experiment on existing datasets with
low (Flickr30K), medium (DIV2K) resolution samples, and on a high-resolution image
downloaded from Adobe Stock [51]. For the low resolution evaluation with the Flickr30k
dataset, we were able to produce a LOD of level 3. The results of this experiment are shown
in Table 12 and Figure 11. The medium resolution evaluation with the DIV2K dataset
produced LODs of level 4 and 5 (see results in Table 13). The high-resolution evaluation
generated a LOD of level 6 with results summarized in Table 14. This last evaluation has
also been performed on an Apple iPad Pro and on a MacBook Pro (IOS Simulator).

For all these experiments, we performed the standard similarity search (production
quality) of Neo4J according to the Neo4J guidelines and benchmarks [49]. Before each
experiment, we cleared the Neo4J database and loaded only the nodes, that were relevant
for the experiment. In the Neo4J query, we adjusted the number of recursions for the
graph-search to the LOD-level of the MMFG. The following query was applied to each set
(exemplary with p = 4):

MATCH (r1:Node {name: ’N_Root_Image_Search’}
)-[*..4]->(child1)
WITH r1, collect(id(child1)) AS r1Child

MATCH (i:Image)-[:img]->
(r2:Node {name: ’N_Root_Image’}

)-[*..4]->(child2)

WHERE r1 <> r2
WITH r1, r1Child, r2, collect(id(child2))
AS~r2Child

RETURN r1.image AS from, r2.image AS to,
gds.alpha.similarity.jaccard
(r1Child, r2Child)

AS similarity
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Figure 11. Experiment 1—runtime comparison based on the Flickr30K dataset (see Table 12).
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Table 12. Experiment 1—Flickr30K dataset.

c n e N(p = 3) Java

10 326 1591 8 ms 9 ms
20 634 3218 33 ms 18 ms
30 885 4843 62 ms 40 ms
40 1100 5140 196 ms 42 ms
50 1384 7512 272 ms 48 ms
60 1521 9979 380 ms 51 ms
70 1792 1231 533 ms 54 ms
80 1986 1482 786 ms 54 ms
90 2208 1705 1044 ms 58 ms

100 2479 1823 1262 ms 60 ms

Table 13. Experiment 1—DIV2K dataset.

c n e N(p = 4) N(p = 5) Java iPad

10 558 3273 65 ms 1027 ms 10 ms 10 ms
20 870 5420 430 ms 4688 ms 18 ms 12 ms
30 1119 7799 1686 ms 44,217 ms 26 ms 14 ms
40 1415 10,501 3303 ms 63,705 ms 35 ms 15 ms
50 1692 12,994 3495 ms 75,845 ms 39 ms 15 ms
60 2023 16,078 4643 ms - 39 ms 18 ms
70 2427 19,776 - - 39 ms 17 ms

Table 14. Experiment 2—Precision and Recall values for the PASCAL dataset. Average Precision is
96.26%, average Recall 92%.

Class rel sel tp tn P R

bicycle 276 278 265 13 1.00 0.96
bus 177 160 157 3 0.90 0.88
car 576 1353 528 825 2.34 0.91
cat 387 384 378 6 0.99 0.97
cow 207 179 178 1 0.86 0.85
dog 369 378 353 25 1.02 0.95
horse 248 242 237 5 0.97 0.95
motorbike 239 225 223 2 0.94 0.93
person 733 713 674 39 0.97 0.91
sheep 251 218 213 5 0.86 0.84

Experiment 2 in Table 14 showed that the best performance was achieved with the
iPad Pro application running in Apple’s Simulator application. The reason for this is,
that in this case they ran natively on a Apple MacBook Pro with 64 GB of memory and
8-core-CPU, which was still faster than any mobile device. It was remarkable though, that
the native performance on the iPad Pro was still better than any other measuring (e.g.,
Neo4J or Java).

In discussion of Experiment 1, we can state that the Graph Code algorithms out-
performed current graph traversal algorithms by more than a factor of five and, more
importantly, grew linearly, in contrast to the exponential growth of graph traversal-based
algorithms. The larger the graph got and the more levels it contained, the larger the dif-
ference was between classic graph traversal algorithms and the Graph Code processing.
This did not only apply to graphs stored in graph-databases like Neo4J, it also applied to
graph traversal based algorithms like stated in Section 2 or [31], as all these algorithms
grew exponentially. Our experiments show, that Graph Code algorithms remained linear
independent from the scale of the corresponding MMIR collection. These results validate
our hypothesis, that Graph Codes are more effective than current graph-based algorithms
for MMIR. Of course, there are many options also within Neo4J to tune and optimize the
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database and the algorithms, but in any case, graph traversal has square or exponential
complexity, whilst Graph Codes performed linearly. Additionally, for Graph Codes several
optimizations according to the MMIR application design are possible and will be addressed
in our future work. Another important point for multimedia processing is that Graph
Codes performed very well on smartphones or tablets (see Table 15) as they could utilize
the existing GPU hardware of these devices. Therefore, the conclusion of experiment 1 is
that any multimedia application can employ fast indexing and retrieval directly on the
user’s device. However, further experiments with different datasets and benchmarks have
to be conducted, to evaluate the performance of Graph Codes in various application areas.

Table 15. Experiment 1—high-resolution image, n = 907, e = 8346, c = 10.

Algorithm Runtime

Neo4J (p = 4) 2836 ms
Neo4J (p = 5) 54,487 ms
Java GC 134 ms
iPad Pro (Simulator) 11 ms
iPad Pro 36 ms

5.2. Experiment 2—Effectiveness

To determine the effectiveness of the Graph Code Algorithm, we selected five test-
queries from the annotations of our random set of 1000 Flickr30k images and calculated
values for precision and recall for these. Our hypothesis was that precision and recall
values should increase due to the higher LOD. For this experiment, we did not feed any
metadata into the GMAF, which would be the case normally. So, the results reflect the pure
object detection capabilities of the GMAF-framework without any semantic enrichment.
Indexing and retrieval was done using Graph Codes. However, as the Flickr30K dataset
was annotated manually, lots of different terms were used to describe the same objects
as no common ontology was applied. Hence, we had to perform two sub-experiments to
reflect these flaws in standardization of the dataset. In the first experiment (No-Synonym
Experiment), only the nouns from the queries were used to create a GCSearch object. This
experiment delivered results for “guitar” only, when the processing of the image detected
the term “guitar”. The second experiment (With-Synonym Experiment) also employed
synonyms for the nouns as well when creating the GCSearch. In this case, the GCSearch
would contain also synonyms in the query. So when querying “guitar”, it would contain
e.g., “banjo” or “bass” in the query as well.

Thus, these experiments also reflect the quality of standardization within the Flickr30K
dataset. Tables 16 and 17 show values for the relevant objects rel in the dataset, the selection
sel by the algorithm, the number of true positive results tp, the number of true negative
results tn, precision P and recall R. Results are also shown in Figure 12.

Table 16. No-Synonym Experiment.

Query rel sel tp tn P R

(A) “Dog” 206 190 188 2 0.98 0.91
(B) “Man” 461 204 119 85 0.53 0.25
(C) “Golf” 11 7 5 2 0.71 0.45
(D) “Guitar” 19 30 17 13 0.56 0.89
(E) “Bicycle” 57 78 54 24 0.69 0.94
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Table 17. With-Synonym Experiment

Query rel sel tp tn P R

(A) “Dog” 206 190 188 2 0.98 0.91
(B) “Man” 629 398 294 104 0.76 0.47
(C) “Golf” 11 7 5 2 0.71 0.45
(D) “Guitar” 36 30 24 6 0.80 0.66
(E) “Bicycle” 66 79 60 19 0.75 0.90

188 2 119
85

5
2

17
13

54
24

A B C D E

Figure 12. Experiment 2—true positives are painted in blue, false positives in cyan. See Table 16.

For discussion of the results, we further investigated the values of P and R and
discovered some flaws in the Flickr30k dataset, as in our manual review of the annotations
and corresponding images, we found lots of inaccurate annotations. Approximately 80%
of the “false negatives” e.g., have been actually correct, but the annotations of the input
images were wrong. In general, the Flickr30k dataset would have to be reviewed and
corrected in order to perform further tests.

After discovering these flaws in the Flickr30k dataset, an additional experiment with
the PASCAL VOC dataset [38] was performed. This dataset comes with predefined object
classes and annotations. An experiment of R. Scherer [52], published 2020 and proposing a
“Salient Object Detector and Descriptor by Edge Crawler” algorithm produced an average
precision of 78.58%. Results of our experiment are shown in Table 14 and Figure 13
and show, that the GMAF and Graph Code processing increased the average precision
to 96.26%.
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Figure 13. Experiment 2—Efficiency of the PASCAL dataset (see Table 14).

In discussion of this experiment, it can be stated, that the object detection of GMAF
and the corresponding Graph Code representation actually was much more accurate than
the metadata of the annotation files of the Flickr30k dataset. In “real world” tests, we were
able to produce Precision and Recall results of more than 97%. The experiment with the
PASCAL dataset proved this as well and provided about 15% better results with an average
precision of 96% and a recall of 92%. These results validate our hypothesis, that the Graph
Codes significantly increased the effectiveness of MMIR due to their higher LOD. Thus, we
can conclude, that the accuracy of the results in MMIR applications was even higher than
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any manual annotation as the GMAF fuses detected objects with textual annotations found
in social media posts, metadata, or on corresponding websites.

Summarizing this section, our modeling and implementation has been validated by
showing, that the actual results in respect of efficiency and effectiveness were better than
current reference algorithms and that thus Graph Codes are highly relevant for future
MMIR applications. The final section of this paper provides an overall conclusion and
outlook to future work.

6. Conclusions and Outlook

In this paper, we discussed the mathematical model of Graph Codes and the advan-
tages of matrix calculations compared to graph traversal operations for Graph Codes,
by ensuring that Graph Codes can be regarded semantically equivalent. We were able
to demonstrate, that Graph Codes provide a fast and easy-to-implement solution for
MMIR applications, which utilizes feature graph structures. Our experiments show, that
calculations in the 2D matrix space significantly outperform graph traversal algorithms
and that the implementation of Graph Codes can be ported to any device (e.g., tablets or
smartphones) without significant hurdles. Graph Codes do not require any databases or
other prerequisites and can be executed directly within any application. This facilitates
installation and deployment of Graph Code based applications.

We also discovered some open remaining challenges. In this paper, we have focused
on images, but it has to be mentioned, that all these concepts apply similarly to other multi-
media types, e.g., video, text, or audio. The only difference is, that for other multimedia
types, some other prerequisites must be considered. As an outlook to future work, these
are shortly summarized here:

• Video: a video is a collection of images, which are typically represented by key-frames
of the video. In terms of MMFG and Graph Code processing, we represent a single
video as a sub-collection, for which an unioning Graph Code based on FTVSub−Coll is
generated. In this FTVSub−Coll , any feature from any image of the video is contained.
When the retrieval algorithm identifies this video (i.e., a collection of images) as a
result, a further processing of each single Graph Code of the sub-collection produces
the exact key-frames, which are valid retrieval results. In case of video, each MMFG
of this sub-collection also contains time code-information, i.e., the exact temporal
position of the feature within the video.

• Text: similar to video, we also regard text documents as a sub-collection of MM-
FGs. In case of large documents, this sub-collection can contain sub-collections itself
and thus represent a document’s structure, i.e., chapters, sections, subsections, sen-
tences. The level of sub-collections depends on the structure of the documents in
the MMIR application. Retrieval is then executed similarly to the retrieval of video
feature information.

• Audio: for audio processing, we apply NLP algorithms as illustrated in [41], which
produce a textual representation of spoken words. This textual representation can be
processed similar to documents in terms of MMFGs and Graph Codes.

• Multimedia: in many cases, the described media types are a fused. A video, e.g., con-
tains not only key-frames, to which object detection can be applied. It also contains
audio layers with spoken words, textual on-screen information (like news tickers),
which provide additional scene-related information, written metadata in, e.g., the
video’s MPEG7 description [17], and Social Media posts related to this video in form
of other texts and images. Figure 14 illustrates a typical example.
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Figure 14. Visualisation of a typical news-related video screen containing multiple different me-
dia types.

Further research on these topics remain to be conducted. When features of various
multimedia types are fused into a single MMFG, this would lead to an increase of the
LOD in the MMFGs. Another major challenge is, that a well annotated set of sample data
for high-resolution, feature-rich MMIR applications has to be created. Our future work
will address these challenges to validate further, that Graph Codes provide an efficient
extension to multimedia databases for indexing and retrieval.
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