
How to construct a MMFG
The Multimedia Feature Graph (MMFG) is the central data structure for Smart Multimedia Information Retrieval. As it is a graph, its structure can 
vary according to the features it contains and the purpose of its construction.

In its simplest form, a MMFG is created with

MMFG mmfg = new MMFG();

However, when using MMFGs within the Generic Multimedia Analysis Framework, the framework will create and prepare such MMFGs for the 
developer.

The most important methods of a MMFG are shown here:

In the simplest form, a Node (i.e. the representation of a multimedia feature) is added to the MMFG:

Node n = new Node();

n.setName("color");

n.setValue("red");

mmfg.addNode(n);

Convenience constructors are available. The same result can be produced by

Node n = new Node("color", "red", mmfg);

Nodes can contain child nodes and thus span subgraphs:

Node child = new Node("color-detail", "RGB(1,2,3)");

n.addChildNode(child);

And nodes can have relationships to various other objects. Amongst these are

TechnicalAttributes describing the metadata of the multimedia recording
SemanticRelationships connecting a node to semantic systems, like e.g. Wikidata
CompositionRelationships describing spacial information like (“ABOVE”, “BEHIND”, etc.)
Timeranges which indicate the time, where the node is relevant within the object
AssetLinks linking to additional resources

Partucularly, the Timerange object is important for the representation of realtime or streaming multimedia objects.

Timerange startOfShow = new Date();

// wait until the show is ended

Timerange endOfShow = new Date();

Node speaker = new Node("TV-Host", "Mike", mmfg, new Timerange(startOfShow, endOfShow));

MMFGs automatically maintain features and their given time ranges for later querying.



In general it is recommended to keep MMFGs flat. This means, every scene should be represented by a Node and what is in the scene should be 
directly attached to the scene-node. Although deeper structures are possible, flat structures have better performance. For a video, you would 
have

MMFG

Scene Node 1

Scene Feature Description 1.1
Scene Feature Description 1.2
...

Scene Node 2

Scene Feature Description 2.1
Scene Feature Description 2.2
...

An example from the Shazam-Plugin, which extracts music information from a given audio track shows this in more detail:

Node n = new Node("Music", mmfg);

n.addChildNode(new Node("Title", title, mmfg));

n.addChildNode(new Node("Artist", artist, mmfg));

n.addChildNode(new Node("Link", link, mmfg));

n.addChildNode(new Node("Writers", writers, mmfg));

n.addChildNode(new Node("Image", image, mmfg));

n.addChildNode(new Node("Label", label, mmfg));

n.addChildNode(new Node("Released", released, mmfg));

n.addChildNode(new Node("Album", album, mmfg));

n.addChildNode(new Node("Isrc", isrc, mmfg));

n.addChildNode(new Node("Genre", genre, mmfg));

n.addChildNode(new Node("Lyrics", lyrics, mmfg));

n.addChildNode(new Node("Preview", image, mmfg));

mmfg.addNode(n);

If the music would be playing right now, you might want to add

n.setTimerange(new Timerange(new Date(), new Date());

The corresponding MMFG then would provide the overall time range information

Timerange overallStart = mmfg.getBegin();

Timerange overallEnd = mmfg.getEnd();

For the representation of textual information, it is recommended to at least maintain the document structure by representing the extracted 
features of a paragraph. However, it is also possible to represent sentences of each paragraph by a sub-structure. This depends on the selected 
algorithm for processing.

MMFG

Paragraph 1

Terms, Sentiments, Topics of Paragraph 1
Paragraph 2

Terms, Sentiments, Topics of Paragraph 2
Paragraph 3

Sentence 1

Terms, Sentiments, Topics of Paragraph 3, Sentence 1
Sentence 2

Terms, Sentiments, Topics of Paragraph 3, Sentence 2

MMFGs can be exported and imported to numerous formats. To achieve this, a flatten / unflatten utility is provided based on two interfaces:



For example, to export a MMFG as XML, you can simply use the XMLEncodeDecode class, which implements both interfaces:

XMLEncodeDecode xml = new XMLEncodeDecode();

String xmlString = xml.flatten(mmfg);

System.out.println(xmlString);

MMFG otherMmfg = xml.decode(xmlString);

Further exports are

Json (de.swa.mmfg.builder.JsonFlattener)
Mpeg7 (de.swa.mmfg.builder.Mpeg7IO)
GraphML (de.swa.mmfg.builder.GraphMLFlattener)
HTML (de.swa.mmfg.builder.HTMLFlattener)
Neo4J (de.swa.mmfg.builder.Neo4JFlattener)
RDF (de.swa.mmfg.builder.RDFFlattener)

Further imports are

Mpeg7 (de.swa.mmfg.builder.Mpeg7IO)


	How to construct a MMFG

