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Abstract: The area of Multimedia Information Retrieval (MMIR) faces two major challenges: the 1

enormously growing number of Multimedia Objects (i.e., images, videos, audio, text files), and 2

the fastly increasing level-of-detail of these objects (e.g., the number of pixels in images). Both 3

challenges lead to a high demand of scalability, semantic representations, and explainability of MMIR 4

processes. Smart MMIR solves these challenges by employing Graph Codes as an indexing structure, 5

attaching semantic annotations for explainability, and employing application profiling for scaling, 6

which results in human understandable, expressive, and interoperable MMIR. The mathematical 7

foundation, the modeling, implementation detail, and experimental results are shown in this paper, 8

which confirm, that Smart MMIR improves MMIR in the area of efficiency, effectiveness, and human 9

understandability. 10

Keywords: indexing, retrieval, explainability, semantic, multimedia, feature graph, graph code, 11

information retrieval 12

1. Introduction and Motivation 13

Multimedia is everywhere! – This describes the current state of the art of information 14

and digital media representation in everyone’s daily life. All of us are living in a world, 15

where digital media (i.e., multimedia objects like images, video, text, audio) communicate 16

and represent information of any kind, at any time, for any topic, and any target group. 17

Remarkable statistics from Social Media [1] outline, that every single minute as of April 18

2022, 66,000 photos are shared in Instagram, 500 hours of video are uploaded to Youtube, 19

2,430,000 snaps are shared on Snapchat, 1,700,000 elements of multimedia content are 20

posted on Facebook, and 231,400,000 E-Mails with media are sent. These large volumes 21

are constantly increasing, which, of course, leads to challenges for the underlying infras- 22

tructure and information retrieval systems. In addition, all these digital media objects 23

continue evolving and, e.g., also constantly increase their level-of-detail (i.e., the amount 24

of transported information), as well. Current Smartphones, like the Xiaomi 12T Pro have 25

camera sensors with 200 Megapixel producing images with an enhanced level-of-detail. 26

And the greater level-of-detail a multimedia object has, the more information can be stored, 27

which needs to be maintained, indexed, visualized, distributed, and also retrieved. 28

In this paper, we summarize previous work from an application perspective and 29

provide solutions for the open challenges of each problem area. The resulting callenges for 30

Multimedia Information Retrieval (MMIR) can be summarized in three major problem areas: 31

1) Interoperability and Integration, 2) Scalability, and 3) Explainability and Expressiveness: 32

• in the area of interoperability and integration, applications require flexible, configurable, 33

and exchangeable processing flows which are also distributable through organisational 34

units or computational instances. This means, that the extraction of Multimedia 35

features and their integration can be different depending on an application’s focus. 36

Furthermore, the increasing number of feature extractors requires a mechanism to 37

integrate features from various extractors, detect inconsistencies, and calculate the 38

relevance of each feature. 39
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• in the area of scalability, the high volume of Multimedia objects and their increasing 40

level-of-detail needs to be reflected by application architectures for the distribution of 41

MMIR processing steps. Scalability becomes more important for modern, cloud-based 42

architectures. 43

• the increase in interoperability and integration, as well as the improved scalability also 44

need to be reflected in the area of explainability and expressiveness. Here, further User 45

Interface (UI) components explaining certain MMIR processing steps are required as 46

well as further techniques for content based validation and optimization. 47

We use the term "Smart MMIR" to describe systems, algorithms, software, or user- 48

interfaces that provide solutions for these three problem areas. "Smart MMIR" thus de- 49

scribes expressive, scalable, interoperable, explainable and human understandable MMIR 50

solutions. In previous work [2][3][4], we already introduced, defined, and evaluated the 51

core components, which contribute to Smart MMIR. However, the interoperability of these 52

components and a corresponding formal model is a foundation for further improvements 53

in the problem areas, which were mentioned above. In this paper, we describe formally 54

these improvements, align them with, or base them on existing algorithms and methodolo- 55

gies, discuss implementation details, and give evaluation results, which finally leads to a 56

platform and model for Smart Multimedia Information Retrieval applications. 57

The structure of this paper follows the problem-solving methodology of Nunamaker 58

et al [5] and describes the current state of the art in section 2, the theory building, i.e., 59

modeling and design of the proposed solution in section 3, implementation examples 60

in section 4, and the results of the evaluation in section 5. In each section, the problem 61

areas mentioned above are addressed in corresponding subsections. Finally, section 6 62

summarizes the results. 63

2. State of the art and related work 64

In this section, the state of the art and related work for Smart MMIR is summarized. 65

An overall framework and corresponding research is discussed in subsection 2.1. The 66

area of scalability and distributed MMIR processing is outlined in subsection 2.2, and the 67

introduction of human understandable semantic annotations is given in subsection 2.3. 68

Figure 1. Multimedia Terms and Definitions

In the remainder of this paper we use the following terms to describe various MM 69

relationships and objects (see also Figure 1): 70

• Real World Object: the objects that are captured by some MM recording. 71

• MM Content Object: a MM representation, typically as a MM file of the Real World 72

scene or event. 73



Version January 30, 2023 submitted to Journal Not Specified 3 of 27

• MM Object: an object within a MM Content object, e.g. a detected person or an audio 74

track within a video. 75

• MM Asset: some MM Objects might have a value for users or applications, e.g. when a 76

license is attached or when users mark MM Objects as "favourites". 77

• MM Feature: represents the features of MM Objects, MM Assets, or MM Content Objects. 78

Of course, for each MM Content Object various digital formats exist. A comprehensive 79

overview is given in [6] by the U.S. Library of Congress. For images, these are formats, 80

like PNG, GIF, JPEG, TIFF, RAW, or BMP. For videos, standards like MOV, MPG, MP4, or 81

MXF, exist. Audio objects can be represented by digital formats like, MP3, WAV, AIFF, or 82

MIDI, and textual information can be stored in, e.g., DOCX, TXT, RTF, XML, HTML, or 83

JSON files. All these formats have different purposes, prerequisites, properties, and digital 84

representations of MM features, and many of these formats can be combined to represent 85

multi-media objects, literally. Working with and integrating all these different MM Content 86

Objects is a challenge for MMIR applications. 87

2.1. Integration area 88

In our previous and related work [7], we introduced a Generic Multimedia Analysis 89

Framework (GMAF), which provides a flexible plugin architecture for the integration of 90

plugins for the extraction of MM Features of different MM Content Objects (see Figure 2). 91

Figure 2. Overview of the Generic Multimedia Analysis Framework (GMAF).

The GMAF provides a flexible, extendable API for the integration of Plugins, which 92

encapsulate the extraction of MM Features of a certain MM Content Object type. All Plugins 93

contribute the detected MM Features to a generic datastructure, the Multimedia Feature 94

Graph (MMFG) [2]. 95

However, there are two remaining challenges: 1) currently, many different plugins are 96

available for the extraction of MM Features. This can lead to contradictions, refinements, 97

or confirmations of detection results. Hence, a mechanism is required for the integration 98

or fusion of MM Features detected by different GMAF plugins. 2) the GMAF is currently 99

based on a static configuration. This means, that all MM Content Objects are processed in 100

a similar way according their content type. However, many applications need a flexible 101

definition of processing instructions. Therefore, a flexible and configurable structure is 102

required to support application based processing flows. 103

Another important related work is IVIS4BigData [14], where an architecture for the 104

visualization of information is presented, which can also serve as an architectural model to 105

process raw data into structured data, and apply analytic algorithms to it. The correspond- 106

ing information model in the area of multimedia can be represented by the stratification 107

model [8], which forms a (optionally time-based) set of different layers, that segments the 108

contextual data contained in, e.g., a video, into multiple layers called strata. By employing 109
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this, feature information of various Multimedia layers can also be identified for a certain 110

point of time, e.g. within a video. Such a model can contribute to the modeling of processing 111

flows, which is outlined in section 3. 112

2.2. Scalability area 113

Due to the increasing level-of-detail of many MM Content Objects, the number of 114

nodes and edges in the corresponding MMFGs increases rapidly. To mitigate this resource 115

constraint, as a first step, the GMAF has been designed to be horizontally scalable, i.e., 116

multiple GMAF nodes can be arranged for distributed processing (see Figure 3). However, 117

many graph based operations have polynomial or even exponential time complexity [9]. As 118

horizontal scaling does not reduce the complexity as such, further optimizations in terms 119

of scalability must be made. Hence, in [7], we introduced the concept of Graph Codes. 120

Figure 3. Distributed processing in the GMAF.

Graph Codes [10] are a 2D projection of a multimedia feature graph on which a set of 121

metrics can be applied. The mathematical background has been outlined in [2] and it has 122

been shown, that Graph Codes are very efficient for the calculation of similarity and other 123

MMIR tasks. Figure 4 summarizes the most important concepts and shows a feature graph 124

(4a and 4b), the corresponding adjacency matrix (4c) and the Graph Code (4d). Furthermore, 125

a screenshot of the GMAF application showing a Graph Code is given in Figure 4e and 4f. 126

In the area of Graph Codes several definitions have been made [2], which are relevant 127

for the modeling presented here. Therefore, in the following section, a short summary is 128

given providing the formal background. 129

• matrix fields of the Graph Codes are denoted by mi,j. 130

• the row and column descriptions are called feature vocabulary terms f vt and repre- 131

sented by the set FVT and also called the dictionary dictGC of a Graph Code 132

• the metric MGC = (MF, MFR, MRT) is a metric triple representing the similarity of 133

Graph Codes on various levels 134

• MF is the feature-metric and is based on f vt and defined as MF(GCi, GCj) =
|dict∩ |
|dicti |

135

• MFR is the feature-relationship-metric and represents all possible relationships. It is 136

defined as MFR(GCi, GCj) =
∑ AM(M∩i,j)−n
|AM(M∩i)|−n , where AM is the adjacency matrix of 137

the corresponding graph. MFR represents the ratio between the number of non-zero 138
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Figure 4. Mutimedia Features represented as a Graph Code index (a-d), example of a Graph Code index
and its matrix visualisation for a text document (e, f).

edge-representing matrix fields and the overall number of equivalent and intersecting 139

edge-representing matrix fields of, e.g., two Graph Codes. 140

• MRT is the relationship-type-metric calculating similar (and not just possible) relation- 141

ships as MRT(GCi, GCj) =
∑

n,i 6=j
i,j (|M∩i−M∩j |)
|M∩i |−n 142

In [2] we outlined an algorithm based on these metrics for the parallel processing of 143

Graph Code operations. This algorithm has been implemented in Java, Objective-C (for 144

Apple devices), and CUDA (for NVIDIA devices) and proves, that the parallelization of 145

Graph Code operations scales linear instead of polynomial or exponential time for the corre- 146

sponding graph-based operations on MMFGs. Experiments [2] show, that the theoretical 147

speedup of these operations only depends on the number of available parallel processing 148

units and also prove linear time complexity. For the exemplary collections employed in [2], 149

a speedup of factor 4.000 was measured. Combined with the already presented solution for 150

horizontal scaling, this is an unseen opportunity for MMIR processing of high volume and 151

high level-of-detail collections. 152
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In [3], Semantic Graph Codes (SGC) have been defined containing semantic annotations 153

with systems like RDF, RDFS, ontologies, or Knowledge Organisation Systems [12][13][15] 154

and thus bridges the gap between the technical representation of MMIR features and its 155

human understandable meaning. 156

The distributed processing of GMAF instances can be regarded as horizontal scaling, 157

and the GPU-based optimizations in parallel Graph Code processing can be regarded as 158

vertical scaling. However, the current architecture of the GMAF is based on a static 159

configuration for either vertical or horizontal scaling. As shown in related work [18][19][20], 160

various algorithms are in place to support automated and/or application based scaling 161

of processes or processing steps. However, to support the integration of both vertical 162

and horizontal scaling, the corresponding configuration, and also the employment of 163

autoscaling algorithms, several prerequisites must be met, which are currently not part 164

of the GMAF. Hence, further modeling and extensions of the framework are required. 165

This will also affect several Graph Code based optimizations for further compression and 166

relevance calculations. 167

2.3. Explainability area 168

To explain representation or indexing structures in MMIR, extensions the both MMFGs 169

and Graph Codes have been made [3], which employ a formal PS-Grammar [17], which takes 170

annotations of the MMFG or Graph Code to create sentences in a human understandable 171

way. According to [16], a grammar G = (V, T, P, S) for a language L is defined by the tuple 172

of vocabulary terms V, the list of terminal symbols T, which terminate valid sentences of L, 173

production rules P, which describe valid combinations of non-terminal symbols and a set 174

of starting symbols S for sentences of L. In [17], PS-Grammars are employed as a specialized 175

form to generate language terms by production rules, in which the left side of the rule is 176

replaced by the right side. If, e.g., α→ β is a production rule in P, and φ, ρ are literals in V, 177

then φαρ→ φβρ is a direct replacement. 178

Particularly, when defining grammars, the set V will contain additional classes to 179

structure the possible production rules (typically defined as Chomsky rules [16]), e.g. classes 180

to describe Nominal Phrases (NP), Verbal Phrases (VP), Prepositional Phrases (PP), or other 181

word types like Adjectives (ADJ), and their location in validly produced sentences [17]. In 182

many cases, grammars are designed, that V ∩ T = ∅. As an example, the sentence, "The hat 183

is above the head", can be represented by the context-free grammar Gen = (Ven, Ten, Pen, Sen) 184

for simple english sentences: 185

• Ven = {Sen, NP, VP, V, N, DET, PR} represents the variables (or non-terminal sym- 186

bols) of the grammar 187

• Ten = {the, hat, is, above, head} is the set of terminal symbols 188

• Pen is the set of production rules for this grammar and can be defined as follows:

Pen = {Sen → NP VP, VP→ V PP, NP→ DET N, PP→ PR NP} (1)

In [3] we further showed, that not only feature graphs but also the indexing structures 189

like, e.g. Graph Codes, can be automatically transformed into human understandable texts. 190

Based on this, further metrics for Semantic Graph Codes have been introduced [4] as follows: 191

• MDIS is the feature-discrimination-metric describing the discriminative power of a 192

feature vocabulary term as MDIS( f vti, f vtj) = ∑n
k=0 |m(i, k)| −∑n

k=0 |m(j, k)| 193

• the TFIDF measure [21] has been adapted, as well to statistically improve the relevance 194

of MMIR features: ∀vti ∈ SGC, ∀vtj ∈ SGCColl : TFIDF(vti, SGC) = MDIS(vti, vtj) · 195

log |SGCColl |
MDIS(vti ,vtj)

196

• MREL can be defined as the feature-relevance-metric representing the difference of the 197

TFIDF-measure of two feature vocabulary terms: MREL(vti, vtj) = TFIDF(vti, SGCColl)−198

TFIDF(vtj, SGCColl) 199
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• the introduction of collection wide stop words SGCSTOP leads to further refinement of 200

the feature vocabulary terms. 201

• finally, and with high relevance for this paper, MABT has been defined as the aboutness- 202

metric for a collection as MABT =
⋃

SGCColl − SGCSTOP 203

In [4] we demonstrated, that based on these metrics, Feature Relevant Graph Codes 204

(FRGC) can be calculated by measuring the distance of a SGC employing MABT . This 205

facilitates calculation of Explainable SGC for answering typical MMIR questions: 206

• "why is this element in the result list?": ESGC = FRSGCElement − FRSGCQuery 207

• "why is element A before element B?": ESGC = FRSGCA − FRSGCB 208

• "what is element A?": ESGCA = ESGC(FRSGCA) 209

On this basis, already human understandable explanations of MMIR processing steps 210

can be calculated. However, the open challenges in the area of integration and scalability 211

also affect the area of explainability and expressiveness. As solutions for these remaining 212

challenges might involve additional MMIR processing facilities, the resulting MMIR process 213

steps become more difficult. Hence, the explanation of such processing steps has also to be 214

validated and/or enhanced. 215

2.4. Related work 216

In the area of Integration, Fusion, or Enrichment of MMIR features [22] several al- 217

gorithms and techniques have been proposed. Related work also aims at solutions for 218

individual multimedia object types. Exemplary here, An effective content-based image retrieval 219

technique for image visuals representation based on the bag-of-visual-words model [23], will be 220

outlined briefly. In their paper, the authors discuss image feature fusion based on two very 221

common feature detection algorithms: the SURF (Speeded-Up Robust Feature) and the 222

FREAK (Fast Retina Keypoint) algorithms. They train a machine learning model for each 223

algorithm and fuse the detected features according to the Bag-Of-Visual-Words model by 224

applying both SURF and FREAK algorithms. 225

In Learning Specific and General Realm Feature Representations for Image Fusion [24] 226

another approach for the fusion of multimedia features is presented. Input image are 227

represented in various transformed formats, each image sis processed with specific feature 228

detection algorithms, and finally the detected features are fused iinto a single model. The 229

authors show, that the fusion of images increases the MMIR results. 230

Instead of fusing features from representations of the same image, the fusion of features 231

from images and texts has also been a focus of research. Particularly in the area of social 232

media, this combination can lead to an increase of effectiveness in retrieval. In Object-Aware 233

Multimodal Named Entity Recognition in Social Media Posts With Adversarial Learning [25], 234

the authors introduce an approach, that feeds features from text named entities [26] and 235

detected image features into a machine learning network. This work provides strong 236

evidence, that the fusion of various MMIR features from different sources increases the 237

overall effectiveness by 3-8% depending on the underlying problem domain. 238

As a last candidate, the paper Discovering Multirelational Structure in Social Media 239

Streams [27] should be mentioned. The authors of this paper highlight that information 240

relevant for topic clusters (e.g., social, travel, project, etc.) is enriched during the time and 241

thus more and more refines the existing information (i.e., feature) basis. This clustering 242

also increases the semantic information of detected features, as ambiguous content can be 243

easier aligned with topic domains. 244

Further articles related to this work are Learning rich semantics from news video archives 245

by style analysis [28], where news-videos in particular are semantically enriched according 246

to production elements (e.g., weather icons, tickers), or Beyond search: Event-driven sum- 247

marization for web videos [29], which illustrates an automated shot-detection and overview 248

for web videos, or Semantics and feature discovery via confidence-based ensemble [30], where 249

machine learning approaches are also employed for the detection of features with a focus 250

on semantics. In Temporal Event Clustering for Digital Photo Collections [31], another approach 251
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similar to the timeline enrichment for images is presented, while Content And Concept 252

Indexing For High- Dimensional multimedia Data [32] introduces additional dimensions (e.g., 253

time, topic) similar to [27]. All this related work basically shows that the fusion of MMIR 254

features provides a potentially significant benefit for retrieval. However, they provide no 255

general or unifying solution or framework for the fusion of any multimedia object type 256

in general and they all utilize existing algorithms and hence are stuck with the existing 257

level-of-detail. 258

2.5. Summary and remaining challenges 259

In this section, we outlined various components that already address general MMIR 260

topics in the problem areas. In the integration area, the GMAF framework provides 261

facilities and existing MM Feature extraction mechanisms to integrate MM Content Objects 262

of different types and to store their MM Features in a MMFG. In the area of scalability, Graph 263

Codes as a 2D transformation of MMFGs show significant speedup due to parallelization 264

and are employed to formally model a set of metrics, which can be also applied in the 265

area of explainability to introduce semantics and human understandable text generation 266

to Graph Codes and MMFGs. However, to fulfill the definitions of "Smart MMIR", some 267

challenges remain open: 268

• in the integration area, the GMAF provides a good and flexible solution. However, this 269

solution is currently quite static and the processing of each MM Content Object is done 270

individually. Although collection-based metrics are available, there is no harmonizing 271

or integrating mechanism between various MM Feature extracting plugins. A more 272

intelligent and semantic approach is required. 273

• in the area of scalability, significant achievements have been made. However, for 274

real-world applications, a flexible approach for the combination of both horizontal 275

and vertical scaling is required to intelligently support different application types. 276

• the current human understandable representation of MMFGs and Graph Codes in 277

the area of explainability is text based. However, in multimedia applications, other 278

visualization techniques must be employed, particularly, as both MMFGs and Graph 279

Codes can become extensive. 280

A solution for these open challenges is now given in the next section. 281

3. Modeling and design 282

As outlined in section 1, Smart MMIR is interoperable, scalable, expressive, human 283

understandable and explainable. In this section, we introduce two new concepts, which 284

contribute to Smart MMIR: the Soundness, which is a descrete parameter describing the 285

consistency of an information set, and Processing Flows, which are a means for scaling, 286

distributing, and integrating Smart MMIR with other applications. This section contains 287

five subsections and a summary. First, the Soundness is introduced in 3.1, then the concept 288

of Processing Flows is described in 3.2. The following three subsections are employed to 289

model the effects of Soundnes and Processing Flows in the area of integration (3.2), scalability 290

(3.3), and explainability (3.4). 291

The modeling here follows the User Centered System Design approach by Norman & 292

Draper [33], which places the user in the center of conceptual modeling. This further means, 293

that the presented solution directly generates a benefit for users of the application. In the 294

context of this paper, this means, that the starting point for the modeling is an Use Case and 295

thus a typical scenario, users may be confronted with. The approach further implies, that 296

such a scenario can be selected as a test case within a cognitive walkthrough experiment, 297

where users work with the application and the results are measured. Finally, this approach 298

guarantees, that any modeling produces a benefit for the users of an application. 299

3.1. Soundness 300

In many MMIR applications, it is important to decide, if the information extracted 301

from a certain MMIR object, is sound. This means, it is consistent, fits together, robust, 302
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describes the MMIR object correctly, and thus also indicates the quality of information. 303

Figure 5 shows two exemplary social media posts, where a description and an image are 304

employed to provide some information to users. If the description fits to the image, such 305

a post can be regarded as being sound. If not, the soundness indicates some mismatch or 306

contradiction in the information. However, for users it may be hard to distinguish between 307

sound and not sound MIR assets. 308

Figure 5. Exemplary social media post with information, that is not sound (a) and sound (b).

For such a scenario, we introduce the Soundness MSND as a discrete value, that can 309

be calculated based on FRGCs and the Graph Code metrics MRT and MFR as the fraction 310

of similar relationship types and possible relationship types between given feature vocab- 311

ulary terms. For the calculation of MSND, Feature Relevant Semantic Graph Codes are 312

employed, as they already represent standardized semantic identifiers, and only contain 313

the relevant features for an application. Furthermore, for the calculation of MSND, only 314

the intersecting paramters of MMIR assets are used. If no common elements are in two 315

FRSGCs, a calculation of MSND is not possible. 316

MSND(FRSGC1, FRSGC2) =
|MRT(FRSGC1, FRSGC2)|
|MFR(FRSGC1, FRSGC2)|

, (2)

For the above example, this means, that the images FRSGC would contain the vocabu- 317

lary term "flower", while the textual description either contains this vocabulary term, or 318

doesn’t. Therefore, MFR would have the value 1 for one common relationship, while MRT 319

would have either value 1 or 0. Of course, real examples not only contain single values, and 320

hence, in section 5 (evaluation), further examples are given. It may be noted, that a typical 321

MMFG can contain tens of thousands of nodes and even more relationships. The calculation 322

of FRSGCs compresses this information but still leaves an average of 500 vocabulary terms 323

for a typical element of a MMIR collection. This means, that the MSND will provide a 324

fine grained classifier for a MMIR asset. It is important to highlight that FRSGCs are still 325

explainable and that the grammar introduced in section 2.3 are still applicable. However, 326

due to the compression of FRSGCs, now shorter and much more precise information can 327

be presented to the users. 328

The introduction of Soundness is particulary relevant for MMIR assets, that consist of 329

multiple individual assets, like documents with e.g., embedded pictures, social media posts 330

with images, videos, texts, comments, likes, medical information with MRT images and 331

doctor’s letters, or various connected information of the same multimedia scene on any 332

other application area. Because, in such a setup, the individual elements that contribute to 333

the information of the combined MMIR asset can contradict or confirm each other and thus 334

produce a higher value for MSND. But also, when applications deal with individual MMIR 335

assets, MSND can be an important metric. In previous work, we already introduced the 336
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Aboutness MABT , which describes a common knowledge of a MMIR collection by calculating 337

the most relevant feature vocabulary terms and the most common relations between them. 338

If, e.g., a medical application collects values for blood pressure, MABT would represent 339

the typical range of such values. If a new asset is added to the collection, MSND can be 340

calculated based on MABT and such indicate the deviation of a certain value from the 341

current state of knowledge within the collection. This leads to numerous application 342

scenarios. Finally, if the definition of truth within an application is given, e.g., because 343

information about laws or scientifically approved texts is fed to a MMIR system, MSND 344

indicates, if a MMIR asset complies to this set of true information. 345

MSND can be represented as a discrete value. This means, that based on this value, 346

thresholds and pre-defined decisions can be introduced. For example, if MSND of a social 347

media post is lower than 0.5, the post can be regarded as fake news. Such decisions can 348

lead to a more flexible way of processing MMIR information. However, to define such 349

processing flows, some further extensions to existing MMIR solutions must be made. This 350

is outlined in the next subsection based on the Generic Multimedia Analysis Framework 351

(GMAF). 352

3.2. Processing Flows, Integration area 353

As shown in section 2.1, the GMAF already contains a structure to attach plugins for 354

the extraction of MM Features. It has also been shown, that various plugins exist, that 355

can contribute features to the same MM Content Object type. For example, if an image is 356

processed by different object detection algorithms, each of these algorithms might detect 357

different or similar objects. However, if, e.g., an algorithm is optimized for the detection of 358

fruit, a tennis ball might be considered as being an orange. If an algorithm is trained for the 359

detection of cars, the MM Feature term "Jaguar" might have a different meaning than the 360

"Jaguar" detected by an algorithm optimized for animals. Experiments in related work [7] 361

show, that depending on the employed MM Feature extraction algorithms, contradictions 362

can exist. 363

Figure 6. Expert use case for feature fusion and processing flow configuration.

This kind of integration has to be defined by an additional user type, an expert user. 364

Hence, following the User Centered System Design approach, an additional use case is 365

introduced (see Figure 6). This use case describes the expert tasks for the definition of 366

Processing Flows. These tasks are typically performed in a preparatory step. It must be 367

noted, that also this preparatory steps directly influcence MMIR processing steps and have 368

also to remain explainable. 369

Contradictions, as well as confirmations should not occur occasionally, but in a planned 370

and user-definable way. Users typically want to construct processing flows and define, how 371

the results of various processing plugins should be combined (see examples in Figure 7). 372

In addition to already existing plugins, two components are introduced: (1) a Feature 373

Fusion facility and (2) the general concept of Processing Flows. Feature fusion is based on 374
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Figure 7. User definable processing flows.

MMFGs and takes one or more MMFGs as an input. The result of such a Feature fusion 375

is a single MMFG, which contains combined or optimized elements. The decision, which 376

elements are moved from the source MMFGs to the resulting MMFG, which elements 377

are deleted, re-weighted, renamed, or even added, is subject to a Feature fusion strategy. 378

According to the open design and architecture of the GMAF, also these strategies should be 379

exchangable and interoperable. Figure 8 shows these newly introduced building blocks in 380

the GMAF architecture. 381

Figure 8. Feature Fusion and Plugin Chain facilities in the GMAF.

Formally speaking, a feature fusion can be denoted as a function 382

f f (MMFG1, MMFG2, ..., MMFGx)→ MMFGResult (3)
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which activates a node-based function fopt, based on the set of nodes of all MMFGs N 383

in a collection with x elements to calculate the resulting (i.e., fused) set of MMFG nodes M 384

based on its node’s properties. 385

N = nj ∈ MMFGi ⇔ i < x (4)

fopt(N)→ M (5)

This means, that for all nodes of the input MMFGs, fopt produces output nodes for 386

the resulting MMFG. Of course, fopt is the function, where algorithmic optimizations, like 387

reasoning, inferencing, fusion, unioning, and weighting, are represented. 388

Furthermore, a Plugin Chain element is introduced (see also Figure 8), which is able 389

to construct a list of processing plugins, feature fusion elements, and any combination of 390

these to support GMAF processing in terms of the above mentioned Processing Flows. 391

From a design perspective, Processing Flows are an adaptation of the Multimedia 392

Stratification Model [8], as each Processing Flow can be regarded as a representation of a 393

particular MM Content Type. Following this model, the layering of Processing Flows can 394

be particularly relevant, when content is real "multi"-media, e.g., embedded audio, video, 395

image objects in other multimedia objects. Formally, and according to Figure 6, such a 396

Processing Flow PF can be constructed by a Source Location Definition SLD, a Processing 397

Type Definition PTD, several Feature Extraction Definitions FED, a number of Feature Fusion 398

Definitions FFD, and a Target Location Definition TLD: 399

PF = {SLD, PTD, FED∗, FFD∗, TLD} (6)

The introduced GMAF Plugin Chain element is designed to accept such Processing Flow 400

definitions and thus provides further flexibility and interoperability, as well as smarter 401

application profiling in the area of integration. 402

3.3. Scalability area 403

As already shown in section 2.2, Feature Relevant Graph Codes represent a compressed 404

form of Graph Codes, based on their relevance within the overall collection. Compression is 405

very important for Graph Code processing, as it leads to even better processing times due to 406

fewer available vocabulary terms. Also, the above introduced Feature Fusion strategies can 407

lead to a compression of the underlying MMFG. However, there is one important difference: 408

Feature fusion determines, what is "right", while FRGC represent, what is "relevant" based 409

on the collection’s content. Both mechanisms require re-processing, when new content 410

is added to a collection. Unfortunately, such re-processing of a collection may be very 411

expensive, as any existing MMFG and any already calculated and optimized FRGC may 412

have to be re-calculated. 413

A simple example illustrates this: as shown in previous work [3], the GMAF is able 414

to detect new MM Features by comparing a new MM asset to similar assets with older 415

timestamps. In medical applications, this can be employed to detect deviations, tumors, or 416

general changes in a patient’s medical data. This can also be employed, to detect the "new 417

watch", a user is wearing on a photo, that has been added recently to the collection. If this 418

is detected, the MM Feature "new watch" is added to the corresponding MMFG and Graph 419

Code. However, at some point of time, this "new watch" might become an "old watch" and 420

be replaced by another "new watch". When this happens, the whole collection (or at least 421

the part of the collection containing the "new watch" Graph Codes) needs to be re-processed. 422

The same applies to the general calculation of FRSGCs, as the underlying TFIDF 423

algorithm employs thresholds to determine, which features are relevant or irrelevant for a 424

collection. If, e.g., we have a collection of thousands of football pictures, a single picture 425

with a tennis ball might be considered as being irrelevant within the collection. However, if 426

users upload millions of tennis pictures, the relevance of the football ones might decrease 427
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and the irrelevant first tennis ball might gain relevance instead. Also here, re-processing is 428

required. 429

Furthermore, it has to be considered, that the GMAF processing is typically distributed 430

both horizontally and vertically. Vertical distribution is responsible for parallelization 431

employing GPU processing, horizontal distribution can be employed to distribute the 432

collection based on MM Content Object type or processing facilities. For example, all 433

videos could be stored at a GMAF node, where specialized video decoding hardware 434

is located. However, in any case, such distributed collections and processing needs to 435

be reflected also in the Feature Relevance Metric MREL as each individual node needs the 436

information of the overall collection’s MREL to calculate FRGCs and thus, to process MMIR 437

including explainability. 438

Hence, in the following, the calculation of MREL is modified. Assuming, that the 439

overall collection of Semantic Graph Codes SGCColl is distributed among n GMAF nodes, 440

each of these nodes has its own, individual subset of SGCColl : 441

∀k ∈ n : SGCColl =
n⋃
k

SGCCollk (7)

To indicate, on which nodes a re-processing is required, MREL is calculated both on 442

the feature vocabulary terms of SGCColl and SGCCollk . This means, that a node’s individual 443

collection’s relevance is compared to the overall collection’s relevance. If MM Assets are 444

added to the collection that are similar to the existing ones, neither the individual, nor the 445

overall MREL is going to change. If different MM Assets are added to a distinct GMAF 446

node, this might - of course - affect this single node, but not automatically all other nodes 447

of the collection. The reprocessing indicator RI for a particular GMAF node k can thus be 448

defined as: 449

∀vti, vtj ∈ SGCColl ,

∀vtm, vtn ∈ SGCCollk :

vti = vtm ∧ vtj = vtn ⇒ RIk = MREL(vti, vtj)−MREL(vtm, vtn) (8)

If RIk is greater than zero (or a certain threshold), the GMAF node k needs re- 450

processing. Otherwise, its relevance values are still valid. A further result of these mod- 451

ification, re-processing will also affect MABT , which is based on MREL. This means, that 452

the topic area of a collection can automatically change from time to time. As Explainable 453

Graph Codes are based on FRGCs, the results of the calculation of human understandable 454

texts will also change, when MABT , and MREL change automatically. 455

Furthermore, it must be noted, that on this basis, the calculation of MSND can also be 456

completed in an efficient manner, as all prerequisites for this calculation can be fulfilled in 457

advance. Once, e.g., MABT is calculated for a collection, for each further element MSND can 458

be calculated in a single step. Based on the introduced processing flow, also specialized 459

hardware can be employed for the calculation of, e.g., Graph Codes by parallel processing, 460

and hence improve the overall application performance. Hence, this modification leads to 461

smarter MMIR processing and scalability. 462

3.4. Explainability area 463

Until now, human understandable texts are calculated for the explanation of MMIR 464

processing steps and results. However, written text in many cases lacks expressiveness. 465

The adage "a picture is worth a thousand words", is a good example that visual expres- 466

sion is regarded to be more appropriate in particular areas and, for sure, in the area of 467

multimedia. Hence, further visualizations of ESGCs, ESMMFGs, and the corresponding 468
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calculations of typical MMIR questions (see section 2.3) are required. As an example for 469

such a visualization, a wireframe of a smart query refinement user interface is shown in 470

Figure 9. 471

Figure 9. Visualization of Query Refinement based on Relevance Feedback.

Furthermore, the just introduced enhancements in the area of integration and scala- 472

bility also affect explainability. For example, the definition of Soundness, Processing Flows 473

and Feature Fusion produces important information, that potentially need to be explained 474

to users. The Soundness, e.g., provides relevant information about the correctness or in- 475

tegrity of a certain MMIR asset. If users, e.g., upload an additional element to their MMIR 476

collection, deviations can be detected automatically and a detailed explanation why this 477

element deviates from another or from the rest of the collection, can be presented to the 478

users. Depending on the definition of processing flows, the MMIR results can be completely 479

different through applications, which may lead to confusion when the same MMIR Objects 480

are viewed by users in different applications. Hence, these steps also have to be included 481

in the expressiveness and explainability of Smart MMIR. However, this topic will remain 482

the subject of future work, as in the context of this paper the important foundation for this 483

research is introduced in the other research areas. 484

Basically, the introduced concepts already provide a solid foundation for the modeling 485

of further UI elements to visualize expressiveness. However, such a refinement and 486

feedback function should be available for any MM Content Object type. This means, that 487

query refinement has to be available for image-based queries, text-based queries, audio- 488

based queries, video-based queries, and mixed multimedia-based queries. Hence, in our 489

modeling, we also employ a generic architecture here, which supports these use cases in a 490

general way (see section 4). 491

3.5. Summary 492

In this section, we introduced a number of extensions and refinements of the existing 493

state of the art to make existing MMIR smarter. Particularly, in the area of integration, 494

the definition of Soundness, Feature Fusion strategies and Processing Flows empower 495

applications to utilize smarter workflows and a semantically correct calculation of MM 496

Features. The adaptation of the Graph Code metrics MABT and MREL for distributed and 497

heterogeneous collections including the calculation of a reprocessing indicator, supports 498

highly efficient scaling of MMIR processing. Finally, we have given an example of a more 499

expressive visualization of MMIR processes in the area of explainability. All these points 500

contribute to Smart MMIR. 501



Version January 30, 2023 submitted to Journal Not Specified 15 of 27

To show and prove, that the modeling here can be implemented, in the next section a 502

brief overview of our prototypical Proof-Of-Concept (POC) implementation is given. 503

4. Implementation 504

In this section, a short overview of selected components of the POC implementation 505

is presented. The full implementation of the GMAF and the corresponding concepts, in- 506

cluding those presented in this paper, is available at Github [34]. In this section, for each 507

problem area, one selected implementation example is given. Subsection 4.1 contains infor- 508

mation about the integration area presenting a feature fusion plugin, subsection 4.2 shows 509

the distribution of collections in the area of scalability, and subsection 4.3 demonstrates the 510

implementation of visual query refinement and relevance feedback. 511

4.1. Integration area 512

In the implementation area, we introduce a new structure in the GMAF, the Feature 513

Fusion Strategy. A corresponding Java interface has been added to the framework as shown 514

in Listing 1: 515

1 public i n t e r f a c e FeatureFus ionStra tegy { 516
2 public void optimize (MMFG mmfg, Vector <MMFG> c o l l e c t i o n ) ; 517
3 } 518

Listing 1: The introduced interface for Feature Fusion Strategies

Based on this interface, various strategies have been implemented. To outline the 519

simplicity, whith which new strategies can be added to this structure, Listing 2 shows an 520

example for a UnionFeatureFusion, which calculates the union of a given set of MMFGs 521

according to the above mentioned structure. 522

1 public c l a s s UnionFeatureFusion implements FeatureFus ionStra tegy { 523
2 public void optimize (MMFG mmfg, Vector <MMFG> c o l l e c t i o n ) { 524
3 for (MMFG m : c o l l e c t i o n ) { 525
4 for (Node n : m. getNodes ( ) ) { 526
5 i f (mmfg . getNodesByTerm ( n . getName ( ) ) != null ) { 527
6 mmfg . addNode ( n ) ; 528
7 } 529
8 } 530
9 } 531

10 } 532
11 } 533

Listing 2: The union feature fusion strategy

Feature fusion is made a core component of the GMAF processing, which now also 534

has been extended to provide Processing Flows. These can be represented by an XML file, 535

which is passed to the GMAF processing of a distinct MM Content Object. An exemplary 536

description of such a processing flow in XML is shown in Listing 3. 537

1 <process −flow name=" ImageImport " extens ion=" * . jpg " i sGenera l=" f a l s e "> 538
2 <plugin − d e f i n i t i o n name=" plugin1 " c l a s s =" de . swa . img . google . GoogleVision "/> 539
3 <plugin − d e f i n i t i o n name=" plugin2 " c l a s s =" de . swa . img . yolo . F r u i t D e t e c t o r "/> 540
4 <plugin − d e f i n i t i o n name=" plugin3 " c l a s s =" de . swa . img . amazon . FaceDetect ion "/> 541
5 542
6 <fusion − d e f i n i t i o n name=" merge1 " c l a s s =" de . swa . f e a t u r e . UnionFeatureFusion "/> 543
7 <fusion − d e f i n i t i o n name=" merge2 " c l a s s =" de . swa . f e a t u r e . RelevanceOptimizer "/> 544
8 545
9 <export − d e f i n i t i o n name="mpeg7" c l a s s =" de . swa . exporter . Mpeg7Converter "/> 546

10 <export − d e f i n i t i o n name=" xml " c l a s s =" de . swa . exporter . XMLFlattener "/> 547
11 <export − d e f i n i t i o n name=" graphml " c l a s s =" de . swa . exporter . GraphMLFlattener "/> 548
12 549
13 <resource − d e f i n i t i o n name=" upload−d ir " type=" f o l d e r " l o c a t i o n =" temp/upload "/> 550
14 <resource − d e f i n i t i o n name=" t a r g e t −d i r " type=" f o l d e r " l o c a t i o n =" temp/ t a r g e t "/> 551
15 <resource − d e f i n i t i o n name=" export −d i r " type=" f o l d e r " l o c a t i o n =" temp/export "/> 552
16 <resource − d e f i n i t i o n name=" facebook " type=" u r l " l o c a t i o n =" h t t p : //www. . . . "/> 553
17 554
18 <param name=" plugin1 . lod " value=" 2 "/> 555
19 <param name=" plugin2 . output " value=" temp "/> 556
20 557
21 <flow −source name=" upload−di r "/> 558
22 <mmfg processor=" plugin1 , plugin2 , plugin3 "/> 559
23 <fus ion processor=" merge1 "/> 560
24 561
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25 <export t a r g e t =" export −di r " exporter="mpeg7"/> 562
26 <export t a r g e t =" c o l l e c t i o n "/> 563
27 </process −flow> 564

Listing 3: Definition of a processing flow

Figure 10. Collection Processor structure for the distribution of collections and processing.

In lines 2-11, the definition of the required resources for the described processing flow 565

are given. For example, in line 2, a GoogleVision plugin is defined, which internally follows 566

the GMAF plugin structure and is made accessible within the processing flow by the name 567

plugin1. Resource definitions in lines 13-16 can be employed to describe infrastructure 568

settings. Each of the processing components can receive additional parameters (see line 18, 569

19), which are then passed via Java Reflection to the specified component. Finally, in Lines 570

21-26, the actual processing flow is defined by a sequential list of actions. In this case, the 571

flow looks for new images in the upload-dir folder, processes these with plugin1, plugin2, 572

and plugin3 and applies a feature fusion with merge1 before finally exporting the result in 573

the mpeg7 format to the collection. 574

4.2. Scalability area 575

In the area of scalability, the structure of the GMAF has been extended to fully support 576

distributed processing. The component responsible for this, is a CollectionProcessor, which 577

represents both horizontal and vertical distribution (see Figure 10). 578

With these introduced structures, also the overall setup of GMAF installations has to 579

be changed. As collections can now be distributed, each collection needs to have one (or 580

more) master-nodes, which represent the knowledge about the distributed components. 581

Hence, when logging on to the GMAF, users must specify which master-node they want to 582

connect to. 583

4.3. Explainability area 584

Finally, in the area of visualization and explainability, a prototypical implementation of 585

relevance feedback and query refinement has been added to the framework, which allows 586

users to mark sections of MM Objects as being generically relevant or irrelevant. Each 587

such mark internally is processed as a separate Graph Code and correspondingly added or 588

subtracted from the query. Figure 11 shows a screenshot of the implemented solution. 589

In Figure 11 for each result element, a set of checkboxes has been added, which give 590

the users the opportunity to mark a complete asset as being "relevant", "irrelevant" or 591

"neutral" according to the current query. Furthermore, event the subsections of the content 592

of a selected query can be marked by drawing bounding boxes (for images) or highlighting 593
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Figure 11. UI for query refinement and relevance feedback.

text with different colors to indicate, which passages or sections are relevant or irrelevant. 594

This highly improves the overall effectiveness of the MMIR process, as users are now able 595

to interactively and visually refine their queries. Further details of this approach are given 596

in section 5. 597

Furthermore, the expressiveness of the GMAF has been improved by adding complex 598

comparison functions, which explain, why an MM Asset is in a result list, what the differ- 599

ence is between two selected MM Assets, and what MM Features are contained in an MM 600

Object from a MMIR perspective. An example of this is shown in section 5. 601

For the processing of reasoning and inferencing, the Apache Jena project [35] has been 602

integrated with the GMAF, which comes with various APIs to define rules and to calculate 603

inferences. As the Jena project is able to import RDFS and RDF files, the integration of the 604

MMFG-RDFS-datastructure is implemented employing the RDF and RDFS export formats 605

of the GMAF. The result of this integration is, that the GMAF framework can now calculate 606

inferences and conflicts based on its own semantic model by passing RDF to Jena, letting 607

Jena calculate the consistency and inferences of the model and thus define the Default 608

Logics and the corresponding set of facts F and hypotheses D. The code snippet in Listing 609

4 shows the exemplary steps to validate a model and to show conflicts. 610

1 / / G e n e r a t e t h e r e l e v a n t GraphCode 611
2 Vector <GraphCode> gcs = 612
3 MMFGCollection . g e t I n s t a n c e ( ) . getAllGC ( ) ; 613
4 GraphCode relevantGC = TFIDF . calculateRelevantGC ( gcs ) ; 614
5 RDFExporter . export ( relevantGC , " mmfgDataExport . rdf " ) ; 615
6 616
7 / / I n i t i a l i z e Apache J e n a 617
8 Model schema = RDFDataMgr . loadModel ( "mmfgSchema . rdf " ) ; 618
9 Model data = RDFDataMgr . loadModel ( " mmfgDataExport . rdf " ) ; 619

10 InfModel infmodel = ModelFactory . createRDFSModel ( schema , data ) ; 620
11 621
12 / / V a l i d a t e C o l l e c t i o n 622
13 Val id i tyReport v a l i d i t y = infmodel . v a l i d a t e ( ) ; 623
14 i f ( v a l i d i t y . i s V a l i d ( ) ) { 624
15 / / e v e r y t h i n g f i n e 625
16 } 626
17 e lse { 627
18 / / C o n f l i c t s 628
19 for ( Val id i tyReport . Report r : v a l i d i t y . getReports ( ) ) { 629
20 System . out . p r i n t l n ( r ) ; 630
21 / / p r o c e s s t h e c o n f l i c t 631
22 } 632
23 } 633

Listing 4: Use of the explainability-feature of the GMAF.

The example in Listing 4 shows, that Jena is employed as a calculation engine for 634

inferencing and reasoning based on the GMAF and MMFG representations (lines 8-10). All 635

relevant MMFG information is exported to a mmfgDataExport.rdf file in RDF format (line 5), 636

which is then loaded into Jena (line 9). Then, the inferencing model can be calculated (line 637

10) and a validity report can be generated (lines 13-23). 638
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4.4. Summary 639

The exemplary implementations of the POC presented in this section show, that the 640

proposed approach can actually be implemented and that both integration, and scalability, 641

as well as explainability of the GMAF can be extended to become smarter. In the next 642

section, an evaluation of this POC is presented. 643

5. Evaluation 644

In this section, details of the evaluation of the POC are discussed. Also following the 645

structure of the previous sections, for each of the problem areas, selected experiments are 646

presented, which outline the overall improvement of MMIR by employing Smart MMIR 647

approaches. First, an evaluation of the integrability of the Smart MMIR components is 648

given in 5.2. Then, experiments in the area of scalability are presented in 5.3, and finally, in 649

5.4 results in the area of explainability are presented. 650

5.1. Soundness 651

The introduction of Soundness provides additional insight and further expressiveness 652

to users, which can be regarded as a major improvement of explainability in MMIR appli- 653

cations. Hence, in the following discussion, further experiments and the corresponding 654

results are shown, which demonstrate the benefits of MSND in various application areas. 655

The detetection of security relevant traffic scenes is one major task in the area of 656

Automotive and Autonomous Driving. The introduction of Soundness can contribute to this 657

task by comparing the actual traffic scene to expected or uncritical and secure traffic scenes. 658

One major advantage of this is, that the calculation of Soundness falls down to simple 659

matrix operations, which can be performed extremely fast, even in realtime, which is highly 660

important in the area of autonomous driving. In the following experiment, we investigated, 661

if and how Soundness can be employed to approve, if the behaviour of cyclists can be 662

regarded as safe or if a higher risk for injuries has to be expected in case of an accident. 663

Therefore, we took legal texts as sound input, which define the recommendations for safe 664

cycling (like wearing a helmet) and created a Graph Code GCSa f e of this text. Then, a set 665

of images has been processed with the GMAF to also calculated the corresponding Graph 666

Codes GCi. The images were taken from Adobe Stock [36] (see Figure 12). 667

Figure 12. Calculation of Soundness in the area of traffic security.

GCSa f e contained vocabulary terms and relationships, that, e.g., described that wearing 668

a helmet is safe, handling of smartphones during drivin is not safe, etc. In total, GCSa f e 669
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had 132 vocabulary terms and the corrsponding relationships. For this experiment we did 670

not use the intersection of GCSa f e and GCi as this would lead to a loss of relevant safeness 671

parameters. Instead, we decided to leave all 132 vorabulary terms and relationships as 672

input for the calculation of Soundness. In total 250 images have been processed in this way. 673

The results show, that no image fully complies to all vocabulary terms and relationships 674

and thus provide a perfectly sound result. This was, of course, expected, as legal texts 675

and the corresponding transformation into Graph Codes, as well as the object detection 676

algorithms employed within the GMAF produce slightly different levels of features. Even 677

after a semantic analysis based on SGCs, there was no perfectly sound result. However, 678

the experiment shows, that most images of the chosen dataset produce a Soundness of 679

MSND = 0.7 − 0.8 (see example images shown in Figure 12a.). Some images show a 680

significantly lower value as shown in Figure 12b with MSND = 0.53 and Figure 12c with 681

MSND = 0.62. A visual examination shows, that images with lower MSND values contain 682

indicators for safety violations, like not wearing a helmet or dealing with a smartphone 683

during cycling. 684

Another area, where Soundness can support MMIR processes, is the area of News and 685

Fake News. As a underlying dataset, we selected the text archive of the Washington Post 686

[38], which is also part of the reference datasets of the TREC conference [39] and contains 687

about 750.000 articles in machine readable JSON-format (see Figure 13a.). These articles 688

have been processed into Graph Codes (see Figure 13b). 689

Figure 13. Washington Post article and the corresponding Graph Code.

Based on these prerequisites, we conducted two experiments. First, the Soundness 690

between to articles in the same topic area is calculated. Second, the Soundness parameter is 691

employed to determine contradicting documents within the same topic area. In both cases 692

it is required to work on articles within a similar topic. It doesn’t make sense to compare 693

sports articles with international politics. As a starting point, we selected an article, that 694

has also been employed during the TREC 2021 conference about "Coyotes in Maryland" 695

(see Figure 14). 696
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Figure 14. Sample Article chosen as a topic for the calculation of Soundness.

Based on this starting point, different datasets have been selected for both experiments 697

and MSND has been calculated for the base article and the elements in the datasets. For the 698

first experiment, a similarity search (based on MF)has been performed to define the dataset. 699

For the second experiment, a search for recommendations (i.e., somehow related articles) 700

based on MFR has been performed to define the dataset. The expectation is, that similar 701

articles would mostly be sound, while in the recommendations also contradicting elements 702

can be found. In this manner, we selected 25 documents for each experiment, the results 703

are shown in Table 1. 704

Doc-Id MF MSND Doc-Id MFR MSND
c23f5d3face1 1.0 1.0 c23f5d3face1 1.0 1.0
9736d04fc8e4 0.9987393 0.93 e7278db80d86 0.9987393 0.82
a83e627dc120 0.99747854 0.88 a83e627dc120 0.99747854 0.82
7f2f110c6265 0.99621785 0.91 7f2f110c6265 0.99621785 0.79
e7eb4319b8bc 0.99495715 0.89 7b9eba0f87d6 0.9924357 0.81
0034bb576eee 0.9936964 0.85 14b64f3d453f 0.991175 0.86
... ... ... ... ... ...
0047d15a24e0 0.96974283 0.94 d43a3ca733b4 0.9621785 0.91
a3ce76ec4751 0.9684821 0.88 d068924b49 0.96091783 0.88
fake news 0.9623122 0.64 fake news 0.93221342 0.59

Table 1. Soundness calculation based on the Washnington Post dataset.

In the first row of Table 1, the input document (see Figure 14) with Doc-Id "c23f5d3face1" 705

is processed and - of course - achieves the highest possible value for similarity, recommen- 706

dation and soundness. In the remainder of Table 1, the other documents of the 25 selected 707

items and the corresponding processing values are shown. The last row in the table with 708

Doc-Id "fake news" contains an article, that has been re-written based on the original text 709

(see Figure 14) with the narrative "As birds have moved into the area other animals such 710

as coyotes have been driven out. This can lead to the downturn of the number of other 711

animals killed by the birds. While birds are natural predators, which get rid of coyotes, 712

they also have an impact by attacking people and their pets." So basically, the terms "coyote, 713

bird, other animals" have been switched to produce a fake news article. 714

The results for Soundness in this experiment show, that Soundness is independent from 715

similarity or recommendations. Furthermore, it shows, that it can be employed for fake 716

news detection, as the value for manually produced fake articles is significantly lower 717

thant the values for the other articles. We assume, that the combination of all Graph Code 718

metrics and MSND will deliver best fake detection results. This will be further elaborated 719

as part of future work. However, even this experiment shows, that MSND can provide a 720

highly relevant measure. Furthermore, it is important to highlight, that the calculation of 721

MSND falls down to simple matrix operations, which can be processed easily, efficiently, 722

and even in parallel. This will be shown in the experiments in section 5.3. Also, a further 723

compression in terms of Feature Fusion can be an additional means to compress the Graph 724

Codes for processing. This is now shown in the next section. 725
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5.2. Integration area 726

In the area of integration, relevance calculations can be performed by employing Fea- 727

ture Fusion strategies. To show the improvement of Feature Fusion, a qualitative experiment 728

has been conducted, where resulting Graph Codes of images are compared. Figure 15 shows 729

two Graph Code for the same image. In Figure 15a) the normal Graph Code is shown, while 730

in Figure 15b) a Feature Fusion plugin has been applied, which removes irrelevant features 731

according to the collection’s content. In this experiment, the collection contained 200 photos 732

of a photo shooting with the same person, same background, same clothing, etc. However 733

only in few photos, the person on the picture was presenting a coffee cup. 734

Figure 15. Feature Fusion for relevance calculation.

This experiment clearly shows the improvement of Feature Fusion and relevance 735

calculations. And when considering, that the Graph Code in Figure 15b) now contains 736

exactly the subset of MM Features, that is actually relevant for the collection, this becomes 737

a very Smart MMIR solution. Of course, when looking for a "coffee cup", the image would 738

have been found also without Smart MMIR. However, when asking questions like, "why is 739

this image relevant?" or "what’s the most important information on this image?", Smart 740

MMIR can produce answers immediately. This is also further evaluated in the area of 741

scalability and presented in the next subsection. 742

5.3. Scalability area 743

In the area of scalability, several quantitative experiments have been conducted to 744

further refine and detail the set of experiments already shown in [2]. Figure 16 shows the 745

corresponding results. The details of this extended evaluation are given in Tables 2 and 746

3 based on the number of input images c, the number of calculated MMFG nodes n, the 747

corresponding edge number e, the Neo4J runtime with p = 3 (i.e., that Neo4J compares up 748

to three links between nodes for similarity). The Java and iPad column shows the runtime 749



Version January 30, 2023 submitted to Journal Not Specified 22 of 27

of the corresponding GMAF implementation. The evaluation of scalability is shown in 750

Table 4 based on n nodes, i GMAF instances, the number a of multimedia objects per 751

instance, and the runtime t for the execution of the experiment. Furthermore, in Table 5, 752

the overall runtime based on the number of physical servers for horizontal scaling nHSC 753

and the number of instances per physical sever iHSC is evaluated. Finally, Table 6 shows 754

the parallelization (i.e., vertical scaling) based on CPU and GPU implementations of the 755

Graph Code algorithms. 756

c n e N(p = 3) Java
10 326 1591 8 ms 9 ms
20 634 3218 33 ms 18 ms
30 885 4843 62 ms 40 ms
40 1100 5140 196 ms 42 ms
50 1384 7512 272 ms 48 ms
60 1521 9979 380 ms 51 ms
70 1792 1231 533 ms 54 ms
80 1986 1482 786 ms 54 ms
90 2208 1705 1044 ms 58 ms
100 2479 1823 1262 ms 60 ms

Table 2. Scalability with the Flickr30K dataset. c

c n e N(p = 4) N(p = 5) Java iPad
10 558 3273 65 ms 1027 ms 10 ms 10 ms
20 870 5420 430 ms 4688 ms 18 ms 12 ms
30 1119 7799 1686 ms 44217 ms 26 ms 14 ms
40 1415 10501 3303 ms 63705 ms 35 ms 15 ms
50 1692 12994 3495 ms 75845 ms 39 ms 15 ms
60 2023 16078 4643 ms - 39 ms 18 ms
70 2427 19776 - - 39 ms 17 ms

Table 3. Scalability with the DIV2K dataset

n i a t
1 1 720,000 635
1 2 360,000 320
1 3 240,000 214
1 4 180,000 164
1 5 144,000 129
1 6 120,000 110
1 7 102,000 96
1 8 90,000 81
1 9 80,000 75
1 10 72,000 73
1 11 65.000 71
1 12 60,000 68
1 13 55,000 67
1 14 51,000 66
1 15 48,000 65
1 16 45,000 65

Table 4. Scalability, initial run on a single server with n GMAF-instances
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nHSC iHSC a t
1 8 90,000 81
2 8 45,000 41
3 8 30,000 29
4 8 22,500 22
5 8 18,000 17
6 8 15,000 14
7 8 12,850 12
8 8 11,250 11

Table 5. Scalability of nodes with 8 GMAF-instances each.

Processing Step CPU (Single
thread)

Apple Metal
(M1)

Nvidia Cuda
GTX

Nvidia Cuda 2x
RTX

Ramp Up 27 2.430 3.015 2.130
Search 1 2.327 103 327 98
Search 2 2.406 107 342 102
Search 3 2.388 98 339 98
Ramp Down 625 792 1.210 723

Total 7.773 3.530 5.233 3.151
Table 6. Scalability, runtime measures (milliseconds) of vertical scaling on GPUs including ramp up
and ramp down phases

Figure 16. Results in the area of scalability.

In Figure 16a), a comparison of the runtime of a similarity search based on graphs 757

(blue) and Graph Codes (red) is shown. For the graph calculations, a standard Neo4J database 758

[37] has been employed and the calculated MMFGs have been inserted. On GMAF side, a 759

standard Java implementation of the above mentioned metrics has been employed for this 760

comparison. The experiment has been executed on the same machine. The results of this 761

experiment clearly prove, that Graph Codes have a better scaling (linear vs. polynomic or 762

exponential) than graph-based algorithms. In this experiment, a speedup of factor 20 has 763

been achieved, however the switch to linear complexity is, of course, even more important 764

than the numbers. 765

Figure 16b) shows the results of a runtime measuring of a horizontal distribution of 766

GMAF instances, which perform Graph Code based operations. This also shows, that the 767

overall runtime of a query processing can be reduced significantly by adding additional 768

nodes to a GMAF setup. The optimal number of nodes for this particular experiment is 769

between 8 and 10 and leads to an improvement of the overall processing time by a factor 770
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of 8.01 (8 nodes with processing time of 81 seconds vs. 1 node with processing time of 771

635 seconds). For this experiment, huge collections containing 750,000 elements have been 772

employed to get reliable results of the possible speedup. 773

Figure 16c) shows both the result values and a diagram of an experiment for vertical 774

scaling on different hardware. In particular, here the CUDA implementation for NVIDIA 775

GPUs has been evaluated. This experiment showed, that significant improvement can 776

be achieved also within a single GMAF instance by enabling parallel processing. In this 777

example, a speedup of factor 40 has been measured, which is only limited by the number 778

of parallel processing units on the GPU. If, theoretically, the whole collection fits into the 779

GPU memory, any MMIR processing can be performed in a single step producing results 780

immediately. 781

Depending on the application, these three scaling methods can be flexibly combined 782

and integrated with each other. If, e.g., these experiments are combined, the overall 783

processing time can be reduced by factor 20× 8× 40 = 6.400! This means, when the 784

previous processing of a MMIR request took, e.g., 6.400 seconds (i.e., one hour and 45 785

minutes), the same request can be resolved with Smart MMIR in a single second. 786

5.4. Explainability area 787

For the area of explainability, various cognitive-walkthrough-based experiments have 788

been conducted to evaluate, how Smart MMIR can improve the overall MMIR experience 789

for users. As stated in the modeling section, further research is planned in this area. 790

Therefore, the following experiments are mostly designed to confirm, that the changes in 791

the areas of integration and scalability do not affect the existing solution. Therefore, in this 792

subsection, two examples of these experiments are shown. 793

Figure 11 already showed the user interface for query refinement. On the right side, 794

sections of a specific image have been marked as "relevant" (green bounding box) and 795

"irrelevant" (red bounding box). The results of this refined query are shown in the center of 796

this screenshot and demonstrate, that due to this refinement, now only white (or at least 797

white-ish) dogs remain in the result list and black dogs have been removed automatically. In 798

a second experiment, the textual visualization of MMIR processing steps has been evaluated. 799

Figure 17 shows, how results of a GMAF search can now be explained automatically by 800

comparing them to the query and applying the introduced metrics. 801
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Figure 17. Visualization of ranking and comparison information.

5.5. Summary 802

Summarizing this evaluation section, it can be stated, that Smart MMIR improves 803

existing MMIR solutions in all problem areas. The experiments show an increase in 804

integrability, significant performance optimizations, and also UI components, that provide 805

more expressiveness and explainability for the users. Particularly, the introduction of 806

Soundness and the corresponding capabilities of SMART MMIR in various application areas, 807

can improve existing solutions and applications. Therefore, the results of these experiments 808

support the overall assumption, that Smart MMIR can provide benefits in all areas of 809

MMIR. 810

6. Summary and conclusion 811

In this paper we introduced, defined, and evaluated our definition of the term "Smart 812

MMIR" and showed, how Smart MMIR differs from standard MMIR. Based on previous 813

work, Smart MMIR can be achieved by adding further modeling, formal calculations, 814

and functional extensions to standard MMIR processes, components and processing steps. 815

Smart MMIR improves MMIR in the following areas: 816

• interoperability and integration: the integration of processing flows and feature fusion 817

provides significant benefit for the interoperability with other applications, the adap- 818

tation of solutions for distinct application areas, and the exchangability of algorithms 819

for further refinements of MMFGs and Graph Codes. 820

• scalability: the improvements in the area of scalability are enormous. Both vertical 821

and horizontal scaling provide a significant speedup of the overall processing time 822

and their combination offers opportunities to increase the Smart MMIR experience for 823

users. 824

• explainability and expressiveness: in addition to the already existing generation of 825

human understandable texts based on ESMMFG and ESGC, further MMIR expressive- 826

ness is introduced to provide and visualize insight into MMIR processing steps. 827

All these areas are important for any modern MMIR application, algorithm, compo- 828

nent, user interface, or framework. The Smart MMIR improvements can either be adapted 829
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for other solutions, or integrated via the GMAF API to enrich applications with Smart 830

MMIR mechanisms and algorithms. 831

Furthermore, Smart MMIR offers great opportunities for further research in the area 832

of feature fusion, reasoning and inferencing, feature extraction, and feature detection. 833

Therefore, Smart MMIR can be regarded as an important and relevant base technology in 834

the area of Multimedia Information Retrieval. 835
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