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Abstract: To cope with the growing number of multimedia assets on smartphones and social media,
an integrated approach for semantic indexing and retrieval is required. Here, we introduce a generic
framework to fuse existing image and video analysis tools and algorithms into a unified semantic
annotation, indexing and retrieval model resulting in a multimedia feature vector graph representing
various levels of media content, media structures and media features. Utilizing artificial intelligence
(AI) and machine learning (ML), these feature representations can provide accurate semantic indexing
and retrieval. Here, we provide an overview of the generic multimedia analysis framework (GMAF)
and the definition of a multimedia feature vector graph framework (MMFVGF). We also introduce
AI4MMRA to detect differences, enhance semantics and refine weights in the feature vector graph.
To address particular requirements on smartphones, we introduce an algorithm for fast indexing
and retrieval of graph structures. Experiments to prove efficiency, effectiveness and quality of the
algorithm are included. All in all, we describe a solution for highly flexible semantic indexing and
retrieval that offers unique potential for applications such as social media or local applications on
smartphones.

Keywords: semantic indexing; multimedia retrieval; framework; multimedia feature vector graph;
MMFVGF, MMFVGG; AI4MMRA; GMAF; AI; graph encoding; graph code

1. Introduction and Motivation

Every year, more than 1.2 trillion digital photos and videos are taken; more than 85%
of them taken on smartphones, and this number is still increasing [1]. This volume of media
is neither manageable for users nor for content providers and/or platforms such as social
media. Capturing pictures readily wherever and whenever you want is unseen in the his-
tory of media creation. Additionally, cloud services and storage costs continue to decrease,
which makes it simple and affordable for users to store large volumes of media assets on
their smartphones [2]. Smartphone vendors provide solutions enabling access to all user
media assets directly through the device by transparently up- and downloading them to
cloud services [3]. The large volume of multimedia assets provides significant challenges
for indexing, querying and retrieval algorithms. Although there is great progress in image
analysis, object detection and content analysis [4], there is still potential for improvement
and further research to optimize the results of information retrieval algorithms.

Artificial intelligence (AI) and machine learning (ML), including deep learning and
pattern recognition in particular, have contributed significantly to research and develop-
ment in recent years [4–8]. Utilizing these algorithms and methods, products and services
that provide a set of functionalities to detect content of images, videos, text or audio have
become available. One key example is Google’s Vision AI, a service to access a fully trained
and equipped neural network for object recognition and basic semantic feature detection
in images [9]. Similar APIs are provided by Microsoft [10] and Amazon [11]. All of these
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services provide basic object detection, text and pattern recognition and basic semantic
feature detection.

Today’s digital cameras and smartphones can automatically provide a large set of
additional information for each picture. Starting with e.g., Date, Time, GEO-Location,
Aperture, Exposure-Time, Lens-Type, Focal-Length, much of this information can enrich
images and their metadata representation. The EXIF-standard describing a set of metadata
fields is implemented in almost all camera models from smartphone to professional [12].
For videos, MPEG7 provides metadata about videos, shots, video content in a standardized
format that is industry-accepted [13]. Semantic knowledge representation also evolved in
providing standards, algorithms, data structures and frameworks [6], including products
or projects like Google’s Knowledge Graph [14] or the Semantic Web [15].

In 2021, we are facing a digital industry with remarkable technology benchmarks that
have pushed the boundaries of physics, electricity and manufacturing beyond expectations.
For example, Apple’s A14 bionic processor in its iPhone 12 has 11.8 billion transistors within
one smartphone [16]. The available storage appears to be growing exponentially, [17]
reaching an unbelievable 6.8 zettabytes (1021 bytes) in 2020 [18]. Additionally, the total
availability of information due to higher bandwidths has reached speeds of 1000 GBit/s
in internal networks [19] and, starting with the 5G standard, also up to 1 GB/s, even in
mobile networks [20]. This foundation enables developers to invent applications that utilize
considerable computing power, transfer data in real time, index and retrieve terabytes
of data, and allow people to collaborate seamlessly with others throughout the world.
Multimedia applications particularly benefit from this infrastructure, as they can utilize
larger files with higher resolution and can distribute them over faster network connections.

Summarizing this, a situation exists in which a significant set of technologies, stan-
dards and tools is available, providing an opportunity on which to build new structures
and algorithms. Here, we provide an overview of a generic framework to integrate the
syntax, semantics and metadata of multimedia content into a unified indexing model,
faciliating direct retrieval or retrieval as an API for other applications. To address the
various levels of multimedia content (technical, content, semantic and intracontent level)
[21,22], we introduce a multimedia feature vector graph framework (MMFVGF) that can
integrate the various metadata features of multimedia assets into a unified semantic data
structure. We also describe an ML-based indexing and retrieval component to refine the
MMFVGF and access the resulting multimedia assets, which is specially optimized for
processing feature graphs on mobile devices.

2. State of the Art and Related Work

This section provides an initial selection of the most relevant state of the art in science
and technology and work related to this paper covering multimedia processing, semantic
analysis, multimedia querying and retrieval, graph processing, AI pattern matching and
social media. It also identifies how our approach addresses open problems. An earlier
instantiation of the ideas in this paper is given in [23].

First, we introduce multimedia processing technologies as a baseline in Section 2.1.
Our generic multimedia analysis framework (GMAF) utilizes and integrates as building
blocks several of the algorithms and technologies presented in this section. Thus, the func-
tionality of the GMAF will also be introduced here. As our approach aims for a semantic
solution, Section 2.2 (Semantic Analysis and Representation) will provide a brief overview
and introduce the terms and technologies required. Section 2.3 (Multimedia Indexing,
Querying and Retrieval) then provides the background and technologies to generate high-
level semantic features of multimedia assets. It also summarizes technologies for querying
and retrieval and their remaining challenges, especially when working on graph-based
semantic structures, which is covered in Section 2.4 (Graph Representation Processing).
To improve graph processing on smartphones, we will introduce an optimized graph
encoding algorithm, which requires a basic understanding of the underlying mathematical
concepts presented in Section 2.5 (Mathematical Background) and will define a graph
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representation that is optimized for use within AI pattern matching systems (Section 2.6).
All of these concepts can be applied to social media applications as described in Section 2.7.
Section 2.8 aligns our approach to a standard multimedia processing pipeline and defines
the scope of this paper.

2.1. Multimedia Processing

In multimedia processing, numerous tools, algorithms and APIs are available. The
most common products are already defined in the previous section [9–12,14,24] and em-
anate from years of research, development and training. Deep learning methods utilize
neural networks to provide better accuracy [8]. Furthermore, large sets of annotated
training data are available [25]. Additionally, numerous standards have been defined in
recent years, including image annotations (such as EXIF [12]) and video metadata (such
as MPEG7 [13]). There are still several vendor-specific metadata models, such as Adobe’s
XMP standard [26] or the production industry standard MXF [27], and all of these can easily
be integrated into GMAF by writing a simple plugin and attaching it to the framework
(see Figure 5). There is significant progress in detecting objects, relevant regions, the color
footprint or even activities or moods of an image or a region. All the technical metadata
are embedded in the image or video itself [12,13], and digital assistants such as Siri [28],
Cortana [29] and Alexa [30] already provide the basic technology to use natural language
for query input. Object and region detection provide promising results [9], and scene
detection and automatic extraction of a video’s key frames are largely solved [24]. There
are also numerous standards for describing general metadata for video [13], and if this
is applied recursively to video, any image processing algorithm is applicable to video,
depending on the computation time.

2.2. Semantic Analysis and Representation

Vocabularies and ontologies are the basis for semantic representation, which are usu-
ally defined in RDF Schema [31]. An overview of the current state of the art is given
in [32] and previously in [33]. In our work, we utilize and contribute to these existing
standards. For example, spatiotemporal annotations in movies can feed composition rela-
tionships (cr, see Section 3.3) into the MMFVG but in return, detected cr information can
be written into the asset’s corresponding MPEG7 sections [13]. To explore associations
between terms and image regions as visual context information, several models have been
defined and developed. Examples are the co-occurrence model, the translation model, the
continuous relevance model and the multiple Bernoulli relevance model [34]. In addition,
with Google’s Knowledge Graph project [14], a large collection of semantic relationships,
synonyms and metadata is available for public use. For training, classification or automa-
tion purposes, several libraries of annotated media are available [25,35], which are widely
applied to training AI components in multimedia detection and analysis. These datasets
can also be applied to the concepts discussed in this paper. However, algorithms operating
over plain implementations of these semantic representations are inefficient. Hence, we
introduce an approach that is compatible with these representations, but performs much
better on smartphones in particular.

2.3. Multimedia Indexing, Querying and Retrieval

Indexing of multimedia content can be performed at various levels. Overviews are
given in [36–38]. The technical level provides mathematical representations of images in
the form of histograms [39] or color histograms [40] and can be enhanced using signal pro-
cessing techniques such as the Fourier transformation [41]. The low-level feature extraction
process delivers edge detection, phase congruency and localized features; the high-level
feature extraction process works on template matching and shape modeling [37]. Pattern
recognition starts to detect similar shapes based on low-level features and applies mathe-
matical methods to process these features [4]. Based on these methods, the semantic level
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has been introduced, where object detection algorithms [9] provide semantic information
that can be combined and integrated with semantic Web technologies [31].

According to [34], three levels of visual information retrieval may be distinguished.
Level 1 contains low-level information, e.g., color, shape, location of image elements. Level
2 provides attributes or semantic content such as the retrieval of objects of a given type
or class, including the retrieval of individual objects. Level 3 gives abstract attributes
and includes search requests for named events or activities. As part of the concept-based
image retrieval process, our approach utilizes existing segmentation algorithms to refine
the image or video semantic information and utilize existing semantic representations of
Level 1 to 3 to refine detected information. The information is represented in a MMFVG
compatible with RDF, but requiring fast and efficient indexing and retrieval in form of
graph codes. In general, this work contributes to closing the semantic gap: “the semantic
gap is the lack of coincidence between the information that one can extract from the visual
data and the interpretation that the same data have for a user in a given situation” ([42]
p. 1353).

However, applications exist where all these levels for indexing and retrieval would
have to be applied in an integrated way. Hence, our approach combines and fuses these
various levels into a unified semantic graph structure, the multimedia feature vector graph
(MMFVG).

2.4. Graph Representation Processing

Semantic information such as the semantic Web is typically represented with graphs.
Building graph structures for representing data is prevalent in computer science [43]. Based
on these semantic graphs, algorithms for indexing and retrieval including graph pattern
matching have been defined and developed [44]. Storing these data structures in databases
such as Neo4J [45] is typical. Graph embedding can represent graphs mathematically [46]
and AI-based approaches optimize pattern matching in graphs [47]. Semantic analysis
based on graphs provides comprehensive query languages like SPARQL [48], RDF Schemas
and many algorithms for graph transformations. In [49], a comparison of algorithms for
graph similarity is given. AI-based methods are becoming more common [47]. Here,
an efficient graph-based indexing and pattern matching is important, particularly on
smartphone hardware. However, in many cases, such processsing is inefficient. Hence, we
introduce a graph encoding algorithm, which provides a fast and scalable approach as it
transforms graphs into a more efficient form for processing that is specifically optimized
for smartphones.

2.5. Mathematical Background

From a mathematical perspective, graphs can be represented through their adjacency
matrix. For weighted graphs, valuation matrices integrate the information on the weights
of edges [50]. This representation also enables the application of mathematical concepts to
graphs [51]. Feature-based similarity calculation on adjacency matrices can be performed
with the eigenvalue method [50]. However, the mathematical approach usually has a
complexity of O(n + e)2. Several approaches are described to improve this for a particular
set of data or within particular conditions [52], but applied to MMFVGs on smartphones,
the performance must still be improved. With our graph encoding algorithm, which uses
an extension to valuation matrices of graphs, this task can be performed in O(n + e) +O(1)
on smartphones.

2.6. AI Pattern Matching

In recent years, AI has progressed, particularly in machine learning, which has evolved
to the point of becoming relevant for both research and industrial applications. The most
relevant technology for our approach is deep learning, which is a subarea of machine
learning and comprises algorithms to model high-level abstractions in data by employ-
ing architectures composed of multiple nonlinear transformations [7,32]. In particular,
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convolutional networks (CNN) are employed as feedforward mechanisms to increase the
accuracy of feature detection. With the GMAF, CNNs are indirectly integrated into our
solution. However, the current CNNs are trained to detect the most relevant part of an
image and hence fail in some cases that our approach could solve. Hence, our approach
includes training sets for AI image processing that is not based on the input image, but on
its corresponding graph code representation of the MMFVG.

2.7. Social Media

In social media, a multimedia asset is much more than “just” a video or an image. In
addition to the raw asset, metadata such as posts, text, description, corresponding posts,
comments, likes or dislikes and the user’s personal settings can contribute to the relevance
of a multimedia asset. Currently, it is difficult to combine all of this data into a unified
model to index semantically all the corresponding components. However, in social media,
usually independent searches based on keywords are applied [53]. Hence, our approach
integrates and fuses detected features of these independent searches by attaching them as
plugins to the GMAF and publishing their results as semantic features into the MMFVG of
related multimedia assets.

2.8. Related Work

A standard multimedia processing pipeline [54] exists for multimedia processing,
to which our relevant contributions can be aligned as discussed previously in [23]. The
general data processing pipeline can be mapped to this standard multimedia processing
pipeline [54], providing a multimedia-specific representation of the eight typical processing
steps of multimedia content (see Figure 1). According to this pipeline model, multimedia
processing is separated into creation, composition and delivery.

Figure 1. Mapping of the general data processing pipeline to the standard multimedia processing
pipeline [54].

Multimedia creation is the process of object encoding and storage retrieval. Here, the
raw data (image, video or text) on users’ smartphones and the corresponding structured
metadata are used and are provided by the smartphone itself or by user applications to
annotate these assets. The assumption is that metadata are directly attached to the asset
in a way such as that detailed in [12] or [13]. The multimedia creation process step also
includes assets that are received by other channels such as social media or messaging,
where the set of metadata can vary.

In the multimedia composition phase, numerous algorithms for the lower-level of
feature extraction, such as SIFT or Haralick, have been defined, implemented and ap-
plied to multimedia content [21,32,55,56]. Segmentation algorithms such as MSER or
SIMSER [32,57–59] help to identify the correct bounding boxes of objects within images,
and several ontology-based models for semantic annotation have been proposed in [32,60–
63]. Recent approaches regarding feature fusion in special topic areas are contributing
to the approach; we are taking [64,65]. In [66], a confidence-based ensemble is proposed
to provide semantics and feature discovery to dynamically extend the traditionally static
semantic classifiers and a mathematical model is provided to resolve semantic conflicts and
to discover new semantics. The multimedia delivery, scheduling and interaction phases
are not relevant in the context of this paper.
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2.9. Discussion and Summary

As stated above, there are many concepts, algorithms and tools that provide solutions
for topics in the area of multimedia processing. However, even deploying these, it is
currently not straightforward to retrieve Multimedia Content for queries such as “show
me a picture where I got my new watch” or “show me the video where my daughter had
her first concert”. One explanation is that most of the described algorithms usually run
independently from each other and do not contribute to a common metadata model. A
second explanation is that there is a great amount of unused potential by focusing only on
a single asset and not taking into account that related or similar assets can also contribute
to the metadata of the asset under investigation.

Our work discussed here contributes to closing this gap by providing a generic
framework to integrate the current state-of-the-art algorithms (GMAF), a data structure
to fuse existing features into a single unified model (MMFVGF) and an ML component
to refine the feature model and to provide semantic indexing, querying and retrieval
(AI4MMRA).

3. Conceptual Design

Our approach is aligned with the user-centered system design defined by Draper [67]
and based on Nunamaker’s methodology [68]. To formalize our model in a visual language,
we use the UML [69] and present an initial use case design for the most relevant activities.
In our context, two major actors can be identified; they interact with a multimedia asset
management system (see Figure 2). The producer creates or modifies multimedia content
by taking pictures, videos, posting to social media or by manually creating annotations.
The consumer will then search, filter and retrieve the asset. The producer and consumer
can be the same person in real-world scenarios. All use cases are part of the data analysis
and metadata enrichment phase of the general data processing pipeline (see Figure 1).

The use cases Create or Modify Asset, Manual Annotation or Asset, Search Asset,
Filter and Retrieve Asset are already in place on almost every smartphone or multimedia
application. Our approach will extend these basic use cases by providing additional
functionalities. From the users’ point of view, nothing will change, and existing applications
can be used in the same way as before. We will enhance the search accuracy of these
applications by providing additional components that will increase the semantic quality of
multimedia retrieval (see Figure 2).

Figure 2. Initial use case design to extend a multimedia asset management system.
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Many smartphones are already able to provide the Text use case and integrate meta-
data based on the standards such as EXIF or MPEG7 into their multimedia assets. These
include location, date and time and are extended in some cases by built-in face detection
or object detection [70]. We extend this use case by feeding its data into the multimedia
feature vector graph (MMFVG) as part of the multimedia feature vector graph framework
(MMFVGF), which enriches and also fuses it with other metadata. These additional meta-
data are generated in subsequent processes. The recursive analysis applies a chain of filters
to every detected object or region in order to refine the detection results. Semantic indexing
fuses the various metadata into a unified model represented by the MMFVG. To take full
advantage of the MMFVG, the Search use case has to also be extended by introducing a
query building component that employs the MMFVGF.

3.1. Framework Overview

From a conceptual architecture perspective, three frameworks are required to fulfill
the requirements given by the use cases (see Figure 3): (1) The generic multimedia analysis
framework to analyze multimedia assets, (2) the multimedia feature vector graph frame-
work to maintain a central data structure and (3) the AI4MMRA to optimize the results
based on ML. Here, we use the term framework to describe software components that
work together in a standardized way in order to provide a certain functionality. A brief
description of these frameworks is given here:

Generic multimedia analysis framework (GMAF): a framework capable of combining and
utilizing existing multimedia processing systems for image, video and text data (such
as social media posts). It can be regarded as a chain of semantic metadata providers,
which will produce all the data that is required to construct a semantic index. The GMAF
represents the use cases Basic Annotation, Recursive Analysis and Semantic Indexing.
Multimedia feature vector graph framework (MMFVGF): a framework that fuses all the
semantic metadata into a large semantic feature vector graph and assigns it to each media
asset. Weights, nodes and references are structured in a way such that the relevance of
features within a multimedia asset can be determined accurately.
AI for multimedia retrieval and access (AI4MMRA): an ML-component to process and
permanently adjust the feature vector graphs of each image or video in order to refine the
relevance data. AI4MMRA provides a permanent reprocessing in terms of the use case
Semantic Indexing in addition to a Query Builder component.

A central shared resource of this approach is the multimedia feature vector graph
(MMFVG), which fuses existing ML-based semantic indexing methods into a single rep-
resentation for multimedia query and retrieval. The MMFVG is the result of the generic
multimedia analysis framework (GMAF) and will be employed within the AI for multime-
dia retrieval and access (AI4MMRA).

Figure 3. Multimedia asset management system architecture including the generic multimedia
analysis framework (GMAF), multimedia feature vector graph (MMFVG) and AI for multimedia
retrieval and access (AI4MMRA).
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3.2. Initial Query Types

To show the expressive potential of the MMFVG, let us look at some initial query types
supported by this data structure, which could represent queries where current algorithms
are likely to fail and the reasons for this:

Q1: “show me the picture from Florida, where Jane wore flipflops”—Some of the algo-
rithms will locate pictures of Jane, and possibly also pictures where a person is wearing
flipflops, but most of the algorithms will fail on their intersection. One would also
retrieve pictures of Jane, where another person next to her is wearing flipflops.

Q2: “show me a picture where I got my new watch”—This type of query is problematic for
most of the current algorithms. One reason is that data from more than one picture are
required to solve this query. A comparison of “old” pictures with those where a “new”
object appears is required. The second reason is that all the object detection algorithms
are trained to find relevant objects, which usually a watch is not. Even employing the
fine-grained object detection, the “watch” will not receive any relevance for indexing.
Even more difficult to answer is the question, “what happens if my “new” watch
becomes “old” again”. (This is one reason why AI4MMRA performs a permanent
reprocessing of feature vectors graphs.)

Q3: “can you find the picture where I had my leg broken”—This is also difficult to solve
with current technology. How should a broken leg be detected? The semantics that
broken legs might be detected by a white plaster cast in combination with the region
detection “leg” is hardly possible. Maybe I broke my arm at another time? How
should current algorithms distinguish? Even if you would have a Twitter post with
that picture, none of the current algorithms would be able to combine this properly.

The combination of GMAF and MMFVGF provides an approach toward a solution
to how such queries could be processed with accurate results. The GMAF produces and
analyzes feature vectors and the MMFVGF integrates and provides the MMFVG data
structure for querying.

3.3. The Multimedia Feature Vector Graph

The MMFVG has not been designed to be human-readable or -viewable, but to provide
optimum AI processing support. The basic concepts are closely aligned to graph theory, so
visualizations can be provided of parts of the MMFVG, but in general, an MMFVG for a
given multimedia asset will be too cumbersome to be visualized in a sensible manner. We
define the MMFVG as a directed, weighted graph with attributed vertices and edges. It
can be applied to a single multimedia asset to represent semantic, technical and content-
based metadata. In addition, each asset’s MMFVG has edges to parts of other assets’
MMFVGs, which lead to a recursive MMFVG graph structure, supporting loops and
subgraphs. Figure 4 shows the UML class diagram of the MMFVG to illustrate the formal
definition. Operations and other details are hidden in this visualization. According to [43],
the MMFVG is a directed graph with subclasses of directed cographs defined as:

MMFVGAsset = (V, E) (1)

where V is the set of vertices and E is the set of Edges. Both vertices and edges are
detailed by attributed subclasses, which represent the corresponding multimedia features.
Vertices V in the context of the MMFVG use the following attributed subclasses V ∈
{n, r, e, w, cn, t, m, s, l, p} (UML classes are formatted in bold letters to link the graph objects
to the corresponding elements in Figure 4.):

• Nodes n1, ..., nn represent objects, activities or regions of relevance that have been
detected within an asset. The root node r is the dominating node of the MMFVG for a
given multimedia asset and is also represented by the node class. External nodes e
represent external information structures such as [14,15] or parts of other MMFVGs
and are also represented by the node class.
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• Weights w1, ..., wn represent the relevance of a node according to a special context.
The context is an important description to refine the search and query scope. It is
created by the related metadata of an MMFVG stucture and helps to determine the
correct usage of homonyms. The context can also represent different aspects of the
same object, such as in the timeline of a movie, where the same object can be used
differently during the story of the movie. A weight represents the importance of the
node in the overall image or video and the deviation from “normal” content compared
to other assets of a similar kind (c.f. the “new watch” example). It is calculated initially
by the GMAF, but constantly refined by AI4MMRA.

• Childnodes cn1, ..., cnn are subobjects that have been detected by recursive applica-
tion of the GMAF, e.g., Person→ Body→ Arm→ Left Hand→ Fourth Finger→
Ring. So, one of the Person’s child nodes would be the “Body”, one of the Body’s child
nodes would be “Arm”, and so on. Child relationships in the MMFVG are transitive.

• TechnicalAttributes t1, ..., tn represent nonsemantic features of a node. These can be
the color footprint of this node (c), its bounding box (b) within the image (defined by x,
y, width, height), the DPI resolution of the section, information about, e.g., sharpness
or blurring, etc.

• GeneralMetadata m represent the asset’s general metadata object, which is extracted
by EXIF or MPEG7 [12,13] and contains information such as, e.g., Date, Time, GEO-
coding, Aperture, Exposure, Lens, Focal Length, Height, Width and Resolution. In m,
a unique identifier for the multimedia asset is also stored.

• Location Nodes l1, ..., ln represent locations where the original multimedia asset or
copies of the asset in original or different resolutions or segments are placed.

• SynonymInformation s1, ..., sn point to a normalized synonym graph, where the “is
a” relationship is modeled. So, for a “Person”, we would find also, e.g., “individual”,
“being”, “human”, “creature” and “human being”.

• Security and Privacy p define the asset’s privacy and security settings, such as for an
access control List. This ensures that users will only process and receive their own
content and content that has been shared with them by other users.

Figure 4. UML class diagram of the MMFVG structure.
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Edges E in the context of the MMFVG are also represented by attributed subclasses
and hence can be defined as E ∈ {cr, sr, sn, mm, al} with:

• CompositionRelationships cr1, ...crn providing a relationship between a multimedia
asset’s objects. It contains information such as, e.g., “next to”, “in front of”, “behind”,
“attached to”, and is calculated by recursively applying the object bounding boxes and
measuring the distances between them.

• Semantic Relationships sr1, ..., srn connect each node to a position within external
semantic knowledge graphs such as [14].

• SynonymLinks sn1,..., snn reference synonym information.
• MMFVGLinks mm1, ..., mmn represent the connection to other MMFVGs as standard

references in the node class.
• AssetLinks al1, ..., aln point to location nodes.

The MMFVG itself does not provide any functionality. It is a data structure for general
use to recursively describe multimedia assets and their semantic relationships and to
provide a generic structure to which the standards of existing specifications can be mapped.
An instance diagram of a MMFVG is shown in Figure 5. For illustration purposes, only
some of the relationships are shown Figure 5. At what point of time during the overall
process the MMFVG has to be constructed and when the permanent reprocessing of the
AI4MMRA is performed must be investigated. This is subject to further analysis with
respect to performance, runtime and data volume and will refine the overall architectural
topology.

Due to the graph-based nature of the MMFVG and the expected number of nodes
and edges, it is clear that current graph-based indexing algorithms will require substancial
processing time for indexing and retrieval. Therefore, we will employ a projection of the
MMFVG into a two-dimensional pixel image for indexing and retrieval, which leads to
improved performance, particularly when utilizing current smartphone hardware. The
next section describes this approach.

Figure 5. Exemplary multimedia feature vector graph (MMFVG) of an instance with attributes.
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3.4. Fast Indexing and Retrieval for Graphs on Smartphones

For a typical image such as those covered in [35], the MMFVG will contain approxi-
mately 1000 nodes and 10,000 edges. Current graph algorithms for indexing and retrieval
[44,71] with this number of nodes and edges are difficult to implement on smartphones due
to memory and runtime restrictions as some of them require O(n + e)2 to find similarities
in graphs. Hence, we have defined and evaluated an indexing and retrieval algorithm
that is particularly optimized for smartphones and associated integrated hardware. The
proposed graph encoding algorithm projects a MMFVG into a two-dimensional pixel image
and performs operations on pixels instead of graph traversal. This pixel image should
not visualize the graph in a human understandable way as other tools do [72]; rather, the
pixel image should be regarded more in the sense of machine-readable barcodes [73] or QR
codes [74] (see Figure 6). Thus, in the following sections, we refer to this image as graph
code (GC) and to the calculation algorithm of the image as the graph encoding algorithm.

Figure 6. A visual comparison of barcodes, QR codes and graph codes.

In general, the graph encoding algorithm receives a graph structure as input—in our
case, a MMFVG. A flattening function fGC projects this graph into a two-dimensional pixel
image (the graph code), which then also represents the structural information of the graph:

fGC(MMFGVAsset) =

x1,1 ... xn,1
... ... ...

x1,n ... xn,n

 (2)

where xi,j represents color of the pixel at position (i, j) in the generated graph code. The
graph code basically uses the MMFVG’s valuation matrix [75] and extends it by assigning
an RGB color to each position of the matrix. Thus, not only weights or the number of
edges can be coded in the valuation matrix but also node or edge types can be stored using
up to 16.8 million colors per position (see Figure 7). It must be guaranteed that the pixel
position of each node and edge is unique. Thus, fGC has to be applied once per graph to
calculate the graph code, and once the GC is calculated, no more graph traversal is required.
Compared to mathematical flattening functions based on linear algebra such as those in
[44,47], we follow a more algorithmic approach to define the transformation of a graph
into the two-dimensional pixel space based on a colored valuation matrix. An example of
this approach is given below in Section 3.5.

Figure 7. Illustration of the graph code generation.
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As fGC is lossless, for each given pixel, the corresponding objects (nodes or edges) of
the underlying graph can be identified directly by the function f ′GC, which will return the
original MMFVG and the corresponding assets. This reduces time required for semantic
retrieval, as the matching object can be accessed immediately (see Figure 8). The function
f ′GC is also employed as a retrieval function and returns a reference to the underlying
semantic feature graph. The concrete implementation of f ′GC depends on the architecture
for storing the graph codes in a database.

Figure 8. Graph-code-based querying and retrieval.

Finding similar semantic information or calculating the overall similarity of two MM-
FVGs is a key task for querying and retrieval. Instead of using mathematical operations like
the eigenvalue calculation [75], the graph encoding algorithm provides the opportunity to
use image-based operations such as pixel comparison, edge detection and AI-based pattern
matching instead and to utilize special hardware for parallelization. As for each MMFVG,
a GC is created, representing the complete semantic information of the corresponding asset,
multimedia graphs can be compared to each other using image comparison and pixel-based
calculations instead of graph traversal algorithms. These pixel-based operations can be
highly parallelized [76–78]. If these operations run on machines such as the Nvidia RTX
2080 GPU [79] or on some special smartphone hardware such as Apple’s A14 Bionic [16],
almost all processing of an MMFVG comparison can be completed in a single parallel step.

For querying and retrieval, the graph encoding algorithm is based on the query-
by-example paradigm [80]: a query is represented as a reduced (in most cases, very
reduced) subgraph to which the GC algorithm is applied resulting in a reduced GCSearch
structure, containing only minimal pixels. In the worst case, we must check every GC
in the database, as to whether they contain matching pixels at the same positions. This
may appear inefficient, but given that each comparison is performed in O(1), and that
the overall number of assets is not too voluminous on smartphones [81], this is rather
exemplary. In addition, it is straightforward to reduce the number of GCs required for
comparison by applying a content-based prefiltering. As our images are already annotated,
we can simply grab the first level of detail including the most relevant objects and apply
the retrieval only to other images with similar objects.

Thus, graph codes and the graph encoding algorithm provide an optimized approach
to comparing MMFVGs and furthermore employ specialized hardware for image process-
ing of many current devices.

3.5. A Graph Encoding Algorithm Example

The following graph encoding example shows how fGC works in general. The appli-
cation of fGC on multimedia is demonstrated in Sections 4 and 5. For this example, we
will employ the input graph shown in Figure 5. Table 1 shows the corresponding pixel
map. For the overall ontology, we define a selection of nodes, contexts, and synonyms in
this example, containing “Jane”, “Head”, “Hat”, “Surprised”, “Woman”, “Jim”, “Arm”,
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“Watch”, “Smile”, “Fun”, “Sports” and “New”. As this example is for illustration purposes
only, we will ignore all the other nodes that would be in the MMFVG. Thus, the corre-
sponding graph code will result in a 12 × 12 pixel image, containing 144 pixels in total. For
the description of weights, edge types or node types and the aggregated information of
more than one MMFVG, we can use up to 12.8 million colors per pixel. In Table 1, we paint
nodes in black, synonyms in red and contexts in brown. Relationships such as "attached"
are painted according to their type (attached = green, above = yellow, child = blue) and
colors for weights are calculated according to their value in gray tones.

Table 1. Graph code image for the MMFVG example shown in Figure 5.
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Head
Hat
Surprised
Woman
Jim
Arm
Watch
Smile
Fun
Sports
New

The corresponding extended valuation matrix for this case is defined as follows. (In
this matrix, the following abbreviations are used: bl = black, b = blue, br = brown, r = red,
g = green, lg = lightgray, gr = gray, y = yellow. The corresponding rows and columns are
taken from Table 1.):

bl 0 0 0 0 g 0 0 0 0 0 0
b bl y 0 0 0 0 0 0 0 0 0
b b bl 0 0 0 0 0 0 0 0 0
b 0 0 r 0 0 0 0 0 0 0 0

bu 0 0 0 r 0 0 0 0 0 0 0
g 0 0 0 0 bl 0 0 0 0 0 0
0 0 0 0 0 b bl 0 0 0 0 0
0 0 0 0 0 b b bl g 0 0 0
0 0 0 0 0 b 0 0 bl 0 0 0
0 0 0 0 0 b 0 0 0 r 0 0
lg 0 0 0 0 0 0 gr 0 0 br 0
0 0 0 0 0 0 0 lg 0 0 0 br


Whilst current graph algorithms have a complexity of O(n + e)2 for each comparision

or pattern matching step, our algorithm can solve the same problem in O(n + 1) +O(1). In
the first step (O(n+ e)), the graph needs to be transformed into a graph code representation,
which requires visiting each node and edge once. The second step can then be performed
almost in parallel on current smartphones (O(1)). As the first step can be performed in
advance, only the second step has to be considerred in regards of the retrieval process. This
improvement in performance compared to graph traversal algorithms is significant.

For our prototypical implementation, we employ a slightly modified GC algorithm,
which contains nodes only for the actually detected features. Whenever additional features
are detected in multimedia assets, we expand the matrix size for the GC and perform a
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recalculation of the models to match this expanded matrix. Applied to the above example,
we would start with only eight rows and columns. Once new nodes for “Steve” or “Mike”
are inserted, the GCs would simply grow into more columns and rows “on demand”.

3.6. The Generic Multimedia Annotation Framework

Following discussion of the central datastructure MMFVG, this section discusses the
purpose and functionality of the GMAF. Figure 9 shows this conceptual approach and
how the multimedia feature vector graph is constructed within GMAF and MMFVGF. The
MMFVGF can facilitate multiple dimensions of feature extraction, in this way significantly
extending and refining the standard multimedia layers as defined in the so-called strata
model [22], in which each media segment has its own layer distinguished by horizontal
layers (mostly time-based) and vertical layers (synchronized media signals). Based on
these layers, additional feature representations are introduced as dimensions within the
MMFVG:

• Features within a single multimedia asset, such as object detection, technical metadata
and basic semantic metadata;

• Features on higher semantic levels, such as people or face recognition, mood detection
and ontology links;

• Recursive features, which result from applying the GMAF recursively to subsets of
the multimedia asset;

• Indirect features, which result from linked assets and refine the features of the current
asset (other scenes in a video, corresponding social media posts);

• Intra-asset features, which use information from assets of the same series, location or
timestamp or data from generally similar assets to refine an asset’s features.

These feature levels can be classified into horizontal levels, which mostly contain
nontemporal indirect features or intra-asset features (besides the temporal dimension),
and vertical levels containing all features within a single asset, including higher semantic
levels and recursive features. GMAF and MMFVGF will produce a unified multimedia
feature vector graph that represents the fused data from all these levels. Due to the plugin
architecture nature of GMAF, additional feature extraction APIs can easily be integrated.
Figure 10 shows the sequence diagram of the feature extraction in general.

Typically, the GMAF processing is performed both locally (on the smartphone) and
centrally (on a server). On the smartphone, the local functionalities for object detection
such as [70] will be used to identify and create an initial MMFVG, which synchronously
or asynchronously is extended by more information fetched by the GMAF Web service,
where additional plugins such as those in [9] or [11] are available. The fusion into a single
MMFVG is performed locally (see Figure 10).

3.7. Natural Language Processing (NLP)

Most Smartphones have integrated Digital Assistants like Siri [28,82]. These assistants
can provide Natural Language Processing (NLP) spoken dialogue interaction interfaces
(chatbot assistants) to users. NLP can facilitate processing the types of queries discussed
in the previous section. In general, we follow the approach given in [83] to generate
SPARQL-Queries based on NLP, but incorporate an additional component to generate a
simple Graph Code based on the keywords of a SPARQL-query, which then facilitates fast
Graph-Code-Retrieval.
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Figure 9. Conceptual processing approach with basic structure of GMAF and MMFVGF.

Figure 10. Sequence diagram of typical processing flow within the GMAF.

3.8. Social Media

In the social media domain, our concepts can provide several improvements. Users
will benefit from more efficient local indexing and retrieval, as social media posts are one
of the sources utilized for optimizing the MMFGVs. Hence, social media can enrich the
semantic information stored on multimedia assets. If local multimedia assets are posted to
social media, they will be also annotated with a MMFVG, so that social media providers
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will be able to read and reuse all the semantic data, which has also been calculated on the
local smartphone. Embedding graph codes into the original asset would also increase the
overall retrieval performance, but this will first require a standardization of the underlying
ontology. This could be established if a social media provider such as Facebook integrates
its own ontology both in the smartphone application and in its server-side processing. In
this case, it would receive perfectly annotated and already optimized multimedia assets.
For users, this kind of seamless integration would be the optimal solution, so that existing
smartphone applications would transparently handle the creation of MMFVGs.

3.9. Summary

In this section, we discussed our model of layers and dimensions and corresponding
basic technologies and algorithms. Our frameworks generate a multimedia feature vector
graph, which is then processed by smartphone-optimized algorithms to create rapid
indexing. For retrieval, we employ NLP and the corresponding SPARQL representation. In
the following section, we will briefly describe our prototypical implementation.

4. Implementation

To exhibit our conceptual approach, we provide several selected implementations
of the relevant components of GMAF, MMFVGF and graph codes. Whilst the GMAF is
based on standard technologies (Java, SOAP, REST, XML and HTTP) and an optimal means
of combining and utilizing them, the MMFVGF and the AI4MMRA cannot be achieved
with standard technologies and must be derived from methods given in [12,13,15,27]. The
foundations and the implementation of graph codes are introduced in this section. The
prototype implementation of the GMAF including the MMFVGF and graph codes is given
at [84]. Our prototype employs methods of [9,12] as well as [85] to implement the plugins
for GMAF also shown in Figure 5. Several different semantic models have to be combined,
fused and mapped during the process of creating the MMFVG.

4.1. Generic Multimedia Annotation Framework (GMAF)

The GMAF is implemented as a framework that employs standard image processing
technologies like object detection, basic semantic annotations and standard image metadata
as described in previous sections by applying methods in [9,12,86]. New algorithms can
be easily attached as plugins and a recursive feature enrichment is also part of the GMAF
and basis for the MMFVG (Figure 5). Usage of the GMAF is straightforward, as it already
provides ready-to-use adapters for the major multimedia processing tools. In general,
the GMAF will process each uploaded multimedia asset according to a processing chain,
where any available plugin is applied to enrich the MMFVG. The GMAF is available as
a standard JEE Web application and can be deployed to any JEE compatible server or
container [86,87]. Figure 11 shows a sample application of the GMAF with an uploaded
image (picture licensed from Adobe Stock [88]), which is then internally processed into a
MMFVG and exported for visualization purposes to GraphML, visualized with yEd [72]
(see Figure 12). Current results of GMAF processing demonstrate that the level of detail
increases significantly due to algorithm recursion. The level of detail that will provide the
best MMFVG-results for further processing is currently the subject of investigation. The
implementation of further GMAF plugins is ongoing.
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Figure 11. GMAF Web application with uploaded image of Rome.

Figure 12. GraphML export of MMFVG constructed from the sample image.

4.2. Multidimensional Feature Vector Framework (MMFVGF)

The MMFVGF calculates the multidimensional feature vector (MMFVG) and provides
structures to organize and maintain this data structure. MMFVGF is also implemented
in Java and includes importers and exporters to various formats (e.g., JSON, GraphML,
XML) and APIs to employ the MMFVGF and access the MMFVG via SOAP and REST.
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Implementation of the various objects of the MMFVG is based on current multimedia
standards such as those in [12–14,24,72,85].

4.3. Graph Code Implementation

Our prototype employs an initial implementation of the GC algorithm to generate
graph code representations of the MMFVG. The implementation has been completed in
Java for illustration purposes, and additional hardware-based implementations employing
CUDA [16,79] are in progress. The graph code of the sample image in the previous section
is shown in Figure 13.

The image in Figure 13 is output from a Java implementation. The algorithm step of
processing a MMFVG node is shown here:

public void process(Node n) {
for (ChildNode cn : childnodes) {

int x = getIndexFor(n.getNodeName());
int y = getIndexFor(cn.getNodeName());
Color color = getColorForType(Node.CHILD_NODE);
pixels[x][y].setColor(color);

process(cn);
}

}

public int getIndexFor(String name) {
// wordMap is a Hashtable containing all
// words of the current ontology
return wordMap.get(name);

}

public Color getColorForType{int type} {
if (type == Node.CHILD_NODE)
return new Color(220,220,100);
if (type == Node.SYNONYM)
return new Color(100, 100,220);
// ...

}

public Color getColorForWeight(float weight,
Context c) {

// weight is between 0 and 1
String name = c.getName();
int r = getColorForContext(name);
int g = (int)()255 * weight);
int b = 255;
return new Color(r, g, b);

}

Figure 13. Snippet of generated graph code from the original input image.
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4.4. AI4MMRA

In order to process queries such as Q1, Q2 or Q3 discussed in Section 3.2, AI4MMRA
is introduced as a specialized AI algorithm to index and retrieve multimedia content. It is
based on the IVIS reference model for advanced interfaces [89] and adapts this model to be
compatible with the EDISON project [90].

The key task for AI4MMRA is to detect deviations of an asset compared to typical
other assets of this type. Whereas the GMAF calculates weights according to standard rules,
AI4MMRA is trained to detect even minor changes of one asset such as the “new watch”
in example Q2 noticing that the “watch” itself usually would not be of any significant
relevance for the picture’s description. For this deviation, a semantic comparison must
be implemented, which can include texts from social media (“look, I have a new watch”),
other images (with the “old watch”), location, date and time information (“me at the
watch store”) and also a comparison of the MMFVG from different multimedia assets. As
semantic relevance directly correlates to query context, the relevance information must be
calculated for each context.

AI4MMRA utilizes the graph codes as a machine-learning-compatible representation
of the MMFVG to detect the relevant parts of the MMFVG according to user or query
context, deviation from other multimedia content and supporting information such as
social media. Graph codes are a solid basis for ML, as there are already many training
models for pattern matching and deviation detection. The main goal of AI4MMRA is to
detect semantic changes of multimedia assets across multiple images or video. Graph
codes, being the pixel representation of semantic graph data, provide convenient input for
ML components. In case of the “new watch” example, AI4MMRA will detect a deviation
based on graph codes (e.g., the color of Jim’s watch has changed), as pixels do not match
the current pattern and will introduce new attributes to the underlying MMFVG, e.g.,
introduce the edge new to the watch node. After this, a reprocessing of a particular set of
MMFVGs and corresponding graph codes is performed. In addition to detecting deviations,
AI4MMRA will also detect similarities and confirm them by increasing the weights of the
corresponding MMFVG edges accordingly (see Figure 14). Due to the design of graph
codes, it is straightforward for AI4MMRA to detect deviations or similarities, as they appear
as lines or connected sections in the graph code, which is a common task for ML-based
pattern matching (see Figure 13).

Applied on smartphones, the concept of AI4MMRA is promising due to the employ-
ment of special AI-optimized hardware like A14-Bionic [16], which has been specially
designed to support pattern matching and ML tasks on smartphone devices. Graph codes
perform even better on this smartphone hardware, as many existing ML models and opti-
mizations can be employed directly, whereas ML-based models for graph similarity are
quite rare on smartphones.

4.5. Querying

As the MMFVG has been designed to be represented in RDF [32] and hence is com-
patible to all corresponding concepts [32], a query to the MMFVGF can be written in the
SPARQL [48] formal query language. For Q2, the corresponding SPARQL query looks like
this:

SELECT ?x ?y ?z
WHERE {

?x rdfs:subClassOf:watch .
?x mmfvg:attribute:new .
?y rdfs:subClassOf:Person .
?y mmfvg:name:Jim .
?x mmfvg:partof:?y .
?z mmfvg:type:Image

}
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By enhancing the current functionality of [48] with MMFVG attributes, nodes and links,
accuracy and functionality of current solutions can be significantly improved. Queries are
tranformed into graph codes within the MMFVGF and thus follow the query-by-example
(QBE) paradigm [80], which constructs a MMFVGSearch data structure representing the
user queries. Such queries will be processed within the MMFVGF to find matching results.

Figure 14. Processing of deviations and confirmations within the frameworks.

4.6. Swift Prototype

For use on smartphones, we are currently developing a Swift prototype to run on
Apple iPads and iPhones with the goal of integrating high-performance local computing
with the Java GMAF Prototype as showin in Figure 10. The Swift prototype will utilize
specially optimized APIs such as that in [70] for local object detection to create a local
MMFVG. If the results are not promising, the algorithm also uses the GMAF Web service
to enrich them with the Java-based plugins based on Amazon [11] or Google [9].

4.7. Summary

Our prototypical implementation shows that the foundations of our approach are
valid for AI-based semantic multimedia indexing and retrieval for social media. Currently,
our implementation analyzes vertical levels with some selected plugins and calculates
a MMFVG. The horizontal levels, including cross-referencing and the AI component to
detect context-based deviations, are still subject to further investigation and implementa-
tion. Optimization and validation of our frameworks is currently ongoing, including the
definition of an approach to the mapping of existing multimedia services covering data
redundancy, information uncertainty and the building of new semantic relations during
the aggregation process of MMFVGs. After extending the prototype with further analysis
plugins, we can commence training the AI4MMRA based on calculated MMFVGs to detect
context-based deviations within the MMFVGs. Finally, the prototype implementation can
be adapted and optimized for smartphones.
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5. Evaluation and Experiments

The current prototype of GMAF, MMFVG, AI4MMRA including the implementation
of graph codes is a foundation for three experiments addressing the efficiency, effectiveness
and quality of the implementation. In this section, we summarize and compare our results
to other approaches.

5.1. Java Prototype Implementation

Our Java prototype implementation reflects our scientific approach with associated
conceptual foundations. The implementation can facilitate extending, integrating and
evaluating plugins, algorithms or concepts. The current implementation is basically a REST
webservice, which processes a single image through the GMAF and MMFVG frameworks.
We have also included a basic HTML form for the user to upload and process an image and
obtain the MMFVG. The implementation of Video handling (including scene detection) is
currently under development. The UML model including the Source Code is published on
Github [91]. The Prototype contains a complete object detection implementation of Google’s
Vision AI [9], the MMFVG and MMFVGF implementation and the GMAF Framework.
Importers and Exporters for GraphML, JSON, XML and HTML are also included. The
Graph Encoding Algorithm has been implemented as an additional Exporter and provides
a downloadable Bitmap file for a given sample image. The Prototype is available for test
via a Java Web application [84].

5.2. Swift/UI5-Prototype

For application on smartphones, we completed a Swift implementation, building
an iPhone and iPad application that focuses on local processing and integrates the Java
prototype for further object detection as shown in Figure 15. Pictures taken from Google
Images are for illustration purposes only. (The prototype is designed to support natural
language input via speech-to-text and translate it into RDF. [83] gives an approach towards
a corresponding solution, but is currently not yet implemented in the prototype.) The
prototype has uncovered the following findings:

• Software design: The described design (see Section 3.1) has to be adapted to the
requirements for Swift and iOS programming, especially regarding UI handling and
requirements regarding Apple’s App Development program [92]. As the prototype
focuses on the capabilities of local processing, the GMAF contains only Apple plugins
for local object detection such as those in [70].

• Local processing: Compared to the Web-based services for object detection such as [9],
local detection is much faster. Local processing does not need to upload images to
a remote server and wait for remote processing results, and can employ specialized
hardware in smartphones such as that in [16]. While remote object detection usually
takes about 25 seconds for an image to be processed, the local call is finished in
milliseconds.

• Multimedia source: We built the Swift prototype to access the user’s local image
library to index and retrieve multimedia objects and to comply to Apple’s standards.

The current version of the Swift prototype can also be found on Github [91].
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Figure 15. The Swift prototype design for GMAF, MMFVG and graph codes.

5.3. Graph Encoding Algorithm

The current graph code implementation shows that graph codes are applicable to any
kind of graph structure. When the following prerequisites are met, the graph encoding
algorithm is a particularly optimal approach for pattern-matching within multimedia graph
structures:

• Density: The graph structure must be dense enough to employ as many pixels as
possible. Large white spots in the graph code lead to reduced performance. For
multimedia assets, this is typical, but for records such as the IMDb dataset, the
performance of the graph encoding algorithm is low.

• Ontology size: As the graph encoding algorithm is based on a finite set of possible
nodes, the size of this set directly affects performance. Our tests give promising
results with ontologies including less than one million possible nodes. Dynamic
ontologies based on the available content can be considered to increase the processing
performance.

• Hardware support: The more parallelism can be employed, the better the performance
achieved. In the best case, the graph encoding algorithm performs in O(1). For smaller
graphs, an unparallelized version can also provide suitable performance, but for larger
graphs, special hardware must be employed.

It has to be stated that graph codes are not applicable for some of the typical graph
operations such as shortest path or community detection. Graph codes really focus on pro-
viding a readily calculated pattern matching structure to detect deviations and similarities.
Further analysis and the evaluation of graph codes on different machines such as those
covered in [79] or [16] is part of our ongoing work.

5.4. AI4MMRA

In general, training an ML component to detect deviations and confirmations of given
graph code images is a common task that is well described and evaluated [4,7,8,66]. Our
prototypical implementation employs Apple’s ML model [93] to implement AI4MMRA on
smartphones. Apple’s API follows common standards, so most existing approaches are
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also applicable. In the current prototype, we focus on the refinement of the deviation and
confirmation MMFVGs in order to update the model accordingly.

5.5. Experiments

To illustrate the validity of our modeling and implementation, we designed and built
three experiments. With these experiments, we want to prove the following hypotheses
(see Table 2):

Table 2. Hypotheses to be proved by the experiments.

Hypothesis Description

A. Efficiency The described approach of using graph codes is more efficient than
current solutions based on graph traversal algorithms.

B. Effectiveness Images that have been processed with the GMAF can deliver good
semantic results.

C. Quality Recursive processing within the GMAF leads to more levels of semantic
details.

To prove hypothesis A (Efficiency), we designed Experiment 1, which compares the
efficiency of graph code processing to standard graph-based algorithms of a Neo4J [94]
graph database. Hypothesis B (Effectiveness) is validated with Experiment 2 by calculating
precision and recall values of a random selection of images from the Flickr30k dataset [35].
Finally, Experiment 3 addresses hypothesis C (Quality) by determining the level of detail
in the GMAF’s object detection according to the number of recursions. For Experiments 1
and 2, we used the Flickr30k dataset [35] as an input; Experiment 3 was conducted with
the uploaded image of Figure 11. Figure 16 shows the design for Experiments 1 and 2.

Figure 16. Design of experiments 1 and 2.

5.5.1. Experiment 1—Efficiency

This experiment focuses on the efficiency of the graph code algorithms. We employed a
random selection of c images from the Flickr30k dataset [35], which contains low-resolution
images including annotations. The images were processed through the GMAF to calculate
the corresponding MMFVGs. For these, MMFVGs and the corresponding graph codes
were generated. The same MMFVG is stored into a Neo4J graph-database [94]. Table 3 and
Figure 17 show the processing results as well as the number of nodes n and the number
of vertices v of the corresponding MMFVGs. The main algorithm of the experiment is a
similarity calculation based on graphs and graph codes. On Neo4J side, we applied the
production-ready algorithm for node similarity as follows:
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MATCH (r1:Node {name: ’N_Root_Image_Search’}
)-[*..4]->(child1)

WITH r1, collect(id(child1)) AS r1Child
MATCH (i:Image)-[:img]->

(r2:Node {name: ’N_Root_Image’}
)-[*..4]->(child2)

WHERE r1 <> r2
WITH r1, r1Child, r2, collect(id(child2))

AS r2Child
RETURN r1.image AS from, r2.image AS to,

gds.alpha.similarity.jaccard
(r1Child, r2Child)

AS similarity

Experiment 1 was executed on a MacBook Pro Machine with 64GB of RAM, where
both the Java implementation of graph codes and the Neo4J database were installed. As
reference implementation for smartphones, we chose an Apple iPhone Pro with the A14
bionic chip [16] and implemented the graph code algorithm in Swift.

Table 3. Experiment 1—Similarity comparison of images performance on the Flickr30k dataset.

c n v Neo4J Java iPhone Pro

10 326 1591 8 ms 9 ms 8 ms

20 634 3218 33 ms 18 ms 14 ms

30 885 4843 62 ms 40 ms 21 ms

40 1100 5140 196 ms 42 ms 28 ms

50 1384 7512 272 ms 48 ms 31 ms

10 20 30 40 50
0

100

200

300

8
33

62

196

272

9 18
40 42 48

8 14 21 28 31

Neo4J
Java GC

iPhone 12 Pro

Figure 17. Experiment 1—Runtimes (see Table 3).

Results of Experiment 1 prove hypothesis A (Efficiency) by showing that graph codes
outperform current graph-traversal-based algorithms by a factor of 3 to 5, and even higher
factors when comparing iPhone and Neo4J results. This effect increases with the number
of detected features. Of course, on the Neo4J side, some optimizations may also improve
the performance, as we just used the recommended standard setup and the production
algorithms (no beta versions) for similarity calculations. However, even then, graph
traversal will still lead to square or exponential runtimes, whilst the processing of graph
codes remains linear.

5.5.2. Experiment 2—Effectiveness

To determine the effectiveness of the graph-code-based indexing and retrieval, we
selected five test queries from the annotations of a random set of 1000 Flickr30k images and
calculated respective precision and recall values. For Experiment 2, we did not feed any
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metadata into the GMAF, which we would normally do. Hence, the results reflect the pure
object detection capabilities of the GMAF framework without any semantic enrichment.
Indexing and retrieval has been performed using graph codes. Table 4 shows values
of relevant rel in the dataset, the selection rsel by the retrieval algorithm, values of true
positive results tp, values of true negative results tn, precision P = tp

rsel and recall R = tp
rel .

Results are also shown in Figure 18.

Table 4. Effectiveness of GMAF and graph code processing within 1000 random images from the
Flickr30k dataset.

Query rel rsel tp tn P R

(A) “Dog” 206 190 188 2 0.98 0.91

(B) “Man” 629 398 294 104 0.76 0.47

(C) “Golf” 11 7 5 2 0.71 0.45

(D) “Guitar” 36 30 24 6 0.80 0.66

(E) “Bicycle” 66 79 60 19 0.75 0.90

188 2
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Figure 18. Experiment 2—true positives (blue), false positives (cyan). See Table 4.

These results did not meet our expectations and give lower values for precicsion
and recall than in our own test datasets. Hence, we investigated the reasons for this
and discovered that in fact, the GMAF processing has been much more accurate than the
manual annotations provided with the Flickr30k dataset. Figure 19 shows an example
for this: the annotation of image (a) does not mention the term “guitar”, while image (b)
is wrongly annotated with “bass” instead of “guitar”. In our own manually evaluated
dataset, we were able to produce precision and recall values of more than 96%. Thus,
this experiment only partly proves hypothesis B (Effectiveness) due to the low quality of
image annotations in the datset. For future tests, a high-resolution dataset with accurate
annotations and reference data is required.

Figure 19. Example images with corresponding annotations from the Flickr30k dataset.
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5.5.3. Experiment 3—Quality

The Flickr30k dataset contains only low-resolution images, which limits the level of
detail of the GMAF feature detection. For efficiency and effectivenes, this is acceptable, but
to measure the feature detection capabilities of the GMAF, higher resolution images must
be employed. Thus, for Experiment 3, we used the high-resolution image shown already
in Figure 11 to show the increase in GMAF feature detection performance according to
the number of recursions. In our experiment, we processed the image through the GMAF
with different numbers of recursions. The results are generated only by applying object
detection, and no additional metadata have been attached to the MMFVGs, which would
further increase the number of nodes and edges. For a better understanding of the results,
we also printed some examples of the detected features in Table 5. If this MMFVG would
be enriched with information, e.g., from the semantic Web, additional annotations and
metadata or AI4MMRA processing, it would contain about 500 nodes and 5,000 vertices.

Table 5. Experiment 3—GMAF processing and object detection based on recursion iterations.

Recursions Nodes Edges Detection Example

0 53 204 Person, Travel, Piazza Venezia, Joy

1 71 274 Pants, Top, Pocket, Street fashion

2 119 475 Camera, Bermuda Shorts, Shoe

3 192 789 Sun Hat, Fashion accessory, Watch, Bergen County (Logo)

4 228 956 Mouth, Lip, Eyebrow, Pocket, Maroon

4 274 1189 Leather, Grey, Single-lens reflex camera

This example proves hypothesis C (Quality) by showing that the recursive application
of the GMAF processing can detect more details and provide a much higher level of
semantic information.

5.5.4. Discussion

Our experiments show the capabilities of GMAF, MMFVGF and graph codes. Experi-
ment 1 shows that using graph codes improves the performance of retrieval by at least a
factor of 3 and performs best on an iPhone 12 Pro, and it proves hypothesis A (Efficiency).
It also demonstrates the valitity of this approach for applications on smartphones. No
additional databases, libraries or frameworks are required. Graph codes also outperform
current production systems such as Neo4J. Experiment 2 shows that the feature detection
of the GMAF is able to produce promising precision and recall results. Unfortunately,
due to a lack of fully annotated high resolution image datasets, these results had to be
verified manually. Thus, hypothesis B (Effectiveness) can only be partially proved by this
experiment. Finally, Experiment 3 shows the level of detail which can be produced by
employing GMAF and the MMFVGF and that the aggregation of several object detection
plugins and their recursive applicance is able to calculate detailed search terms for further
processing. By this, hypothesis C (Quality) is al;so proved. All experiments and sample
data are available on Github [91].

6. Summary and Relevance

Filling the semantic gap has been a research topic for years. Much research has helped
to gain better basic analysis of multimedia content. However, current technologies still
cannot cope with the substantial volume of generated content. The frameworks, concepts,
architectures and implementations described here are designed to close the gap and to
provide an extensible solution for AI-based indexing and retrieval of multimedia content
with a particular focus on social media on smartphones.

The GMAF framework and the MMFVGF and AI4MMRA contribute to research and
technology and provide basic components and solutions for other applications. Appli-
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cations based on this technology will increase the quality of multimedia querying and
retrieval for the user and/or the service providers such as social media. Graph codes may
become an important part of multimedia processing on smartphones, as they bring a new
approach to employing mobile hardware in a particular context.

Integrating more plugins into the GMAF, optimizing the frameworks for smartphones,
training AI4MMRA and evaluating the performance of graph codes on different machines
is part of our ongoing work and will be published on Github [91] and other channels.

In summary, our approach provides a solid basis for further research, optimisation and
technologies, which specialize on smartphones, employ the existing hardware in a optimal
way and provide an extensible and modular set of frameworks for current and future
applications of multimedia indexing and retrieval. The presented approach contributes
to indexing and retrieval due to better performance and better accuracy and performs
well on smartphones. The research results on graph codes can also be applied to other
graph-based algorithms not related to multimedia. Thus, this paper describes a solid basis
and implementation for future research and technologies in numerous application areas.
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